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Cardiolipin is a phospholipid with negatively charged headgroups. This lipid is 

structurally unique in its quadruple-chained configuration and functionally unique in 

its nearly exclusive involvement in the cellular energy production processes. Whether 

the structural uniqueness leads to the functional exceptionality has long been an open 

question. Like other phospholipids, cardiolipin is a liquid crystal and demonstrates 

polymorphism when it is purified and mixed with water. Many studies have been 

dedicated to examining the phase behavior of cardiolipin liquid crystals in an effort to 

understand the driving forces behind phase transitions and to ultimately decipher the 

structure-function relation. However, few, if any, studies have thus far systematically 

investigated cardiolipin phase behavior in broad temperature and concentration ranges. 

In this thesis, small- and wide-angle X-ray scattering techniques were employed to 

study the phase behavior of cardiolipin-water mixtures. A phase diagram was mapped 

in lipid concentrations from 32.9 wt% to 85.4 wt% and temperatures from -20 °C to      

60 °C. Two striking features were observed in this cardiolipin phase diagram: the 

presence of a lamellar-lamellar phase separation region and a phase displaying 

crystalline-like X-ray scattering patterns. Based on the X-ray scattering data 

underlying the phase diagram, electron density maps of the cardiolipin liquid crystals 

were reconstructed with two different methods and their structural parameters were 

derived, both within and across a phase boundary. A relationship between phase 

behavior and structure was observed from this structural information and utilized to 



 

construct a "structure map". Based on the structure map, an energetics view was 

provided to explain the observed phase transitions and to explore the nature and 

origins of the two striking phase behaviors. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 

Lipids are an important building block of biomembranes. They provide not just a 

matrix to host proteins and nucleic acids but also an active role in many biological 

processes (e.g., Wymann and Schneiter, 2008; van Meer et. al., 2008; Valiyaveetil et. 

al., 2002; Chen et. al., 1997). They are liquid crystals, both in vivo and in vitro, and 

usually arranged in a liquid crystalline lamellar structure commonly seen in 

biomembranes. However, some biologically relevant lipids are capable of self-

assembling into a variety of non-lamellar liquid crystalline structures when they are 

purified and mixed with water, a phenomenon called polymorphism. Understanding 

the forces driving polymorphism is expected to provide insight on how lipids affect 

the biomembrane organization and how they interact with proteins (Gruner, 2005). In 

this thesis study, we chose cardiolipin as our research subject. Cardiolipin is a charged 

phospholipid. It is structurally unique in its quadruple-chained configuration (other 

common lipids are double-chained) and functionally unique in its nearly exclusive 

involvement in the cellular energy production processes (Claypool, 2009; 

Mileykovskaya et. al., 2005; Haines and Dencher, 2002). Whether and how the 

structural uniqueness and functional exceptionality are related with each other is still 

an open question. The goal of this thesis is therefore to provide further understanding 

of the polymorphic phase behavior of cardiolipin in an effort to shed light on this 

structure-function relation. Using small- and wide-angle X-ray scattering techniques, 

we mapped the phase diagram of cardiolipin in lipid concentrations from 32.9 wt% to 

85.4 wt% and temperatures from -20 °C to 60 °C, from which two peculiar phase 

features were observed. A combined energetics and structure perspective was 



2 

proposed to explain the mechanisms of the cardiolipin phase behavior. Effects of the 

cardiolipin headgroup charges were analyzed in terms of two different energetic 

contributions and found to compete with each other to determine the cardiolipin phase 

preference. 

Our discussion of this topic will begin with a brief review on biological roles 

(Section 1.2) and polymorphism (Section 1.3) of lipids. The forces driving the lipid 

phase behavior and their theoretical models will be discussed in Chapter 2. 

Experimental setup and procedures for this thesis study will be described in Chapter 3. 

Data on the cardiolipin phase behavior will be presented in Chapter 4, followed by 

concluding remarks and suggested future studies in Chapter 5. 

  

1.2 Biological Roles of Lipids in Biomembranes 

 

Lipids are a broad group of biomolecules with the common feature of limited 

water solubility. Natural compounds belonging to this group are as structurally diverse 

as including fatty acids (e.g., Figure 1.2.1a), fat-soluble vitamins (e.g., Figure 1.2.1b), 

waxes (e.g., Figure 1.2.1c), steroids (e.g., Figure 1.2.1d), glycerophospholipids (e.g., 

Figure 1.2.1e) and sphingolipids (e.g., Figure 1.2.1f). Lipid diversity of chemical 

structures is reflected in their functional versatility. Lipids are major energy storage 

media in some organisms, attributable to their highly reduced states, and regulate 

some cell metabolisms by acting as first or second messengers in signal transduction 

processes (Wymann and Schneiter, 2008). Lipids also affect inter- and intra-molecular 

organizations and thereby functions of membrane proteins via their specific and/or 

collective interactions with the proteins (Andersen and Koeppe, 2007). One lipid 

species has even been suggested to be involved in membrane protein folding 
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(a) 

(b) 

(c)                                                                         (d)  

 

(e) 

(f) 

Figure 1.2.1. Chemical structures of different types of lipids: (a) oleic acid; (b) 

vitamin E; (c) cetyl palmitate; (d) cholesterol; (e) dioleoylphosphatidylethanolamine 

(DOPE); (f) N-C12-deoxysphinganin. 
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(Bogdanov and Dowhan, 1998). Among such diverse biological functions, many lipids 

are most widely known to be a major building block of biomembranes. Many of other 

lipid functions appear to be the extension of this role.  

Biomembranes are mainly composed of lipids and proteins. Although the lipid 

compositions in biomembranes are extremely complicated, many common biological 

membranes are primarily constructed with phospholipids (van Meer et. al., 2008). 

Phospholipids are molecular assemblies of polar headgroups containing phosphates 

and hydrophobic tails comprising hydrocarbons (Figure 1.2.2a). This combination of 

hydrophobic and hydrophilic parts renders phospholipids amphipathic characteristics 

and the ability to self-assemble into various structures against aqueous or oily 

environments. In ordinary physiological conditions, the most common structures that 

lipids form are bilayer structures. As the name suggests, bilayer structures are 

constituted by two layers of lipid molecules, each called a "leaflet", and arranged in 

such a way that the headgroups form the interfaces with aqueous surroundings and the 

tails are buried inside (Figure 1.2.2b). The hydrophobic nature of the interior makes 

biomembranes an efficient barrier against diffusion of ionic and polar compounds into 

or out of cells and organelles. This property is employed by cells to separate their 

contents from the environments as well as to compartmentalize cell interiors and form 

various organelles.  

The lateral organization of biomembranes can be modeled as 2-D fluids, or more 

precisely liquid crystals, which are composed of lipids as the solvents and membrane 

proteins as the solutes. This viewpoint was historically established by Singer and 

Nicolson in their fluid mosaic model (Figure 1.2.3; Singer & Nicolson, 1972; Edidin, 

2003). In this model, a lipid bilayer acts as a 2-D matrix within which membrane 

proteins are distributed randomly and diffuse freely in lateral orientations. In other 
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(b) 

Figure 1.2.2. (a) Chemical structure and schematic representation of a phospholipid 

molecule. (b) Model of a lipid bilayer structure. ((b) is adapted from Tresset (2009)) 
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Figure 1.2.3. Fluid mosaic model of cell membranes, proposed by Singer and 

Nicolson (1972). In this model, lipids form a matrix in which membrane proteins are 

randomly distributed. This view of biomembranes was later modified considerably. 

See the text for details. "Outside" and "inside" refer to the compartment bound by the 

membrane. (The figure is from Nelson and Cox (2005)) 

 

words, virtually no long-range order exists within the membrane plane. While basic 

concepts of the model still hold true today, more recent experimental evidence has 

implied the need of modifying the model significantly. Rather than distributed evenly, 

certain lipid and protein species were observed to segregate laterally and form clusters 

with physical properties distinctive to the bulk of the biomembrane (Simons and 

Ikonen, 1997; Edidin, 2003). This observation of lateral structure heterogeneity led to 

proposal of the raft model, which is speculated to be the vehicles employed by 

biomembranes to fulfill their biological functions. Lipid rafts are postulated as 



7 

dynamic nanoscale assemblies of specific lipids and proteins, with the dimension of 

10-200 nm and distributed within a bulk lipid matrix (Jacobson et. al., 2007; Pike, 

2009; Lingwood and Simons, 2010; van Meer et. al., 2008). The rafts are enriched in 

two lipid species, sphingolipids and sterols, and the peripheral membrane proteins 

attached to the rafts via the glycosylphosphotidylinositol linkage. Presumably driven 

by structural similarity and hydrogen bonding, these raft-forming components possess 

the potential of assembling with one another and forming small, transient aggregations 

on biomembrane surfaces. When triggered by biological events such as ligand binding 

or protein oligomerization, these individual lipid rafts might coalesce to form larger, 

more stable raft structures through lipid-protein, protein-protein and/or lipid-lipid 

interactions. This process effectively coordinates and organizes the raft components 

for specific biological tasks (Lingwood and Simons, 2010). Akin to the presence of 

organelles within cells, the formation of lipid rafts is equivalent of compartmentalizing 

biomembranes for a higher biological efficiency. The lipid raft model was initially 

proposed to explain the observed lipid and protein sorting/trafficking phenomena in 

the trans-Golgi network of polarized epithelial cells (van Meer et. al., 2008; Simons 

and van Meer, 1988). Thus far, the model has evolved to be implicated in various 

biological processes such as signal transduction (Simons and Toomre, 2000), cell 

apoptosis (Malorni et. al., 2007) and cell migration (Manes et. al., 2003). A salient in 

vivo manifestation of the raft concept is caveolae (Figure 1.2.4), a cholesterol- and 

glycosphingolipid-rich invagination on the plasma membrane surface, and might be 

involved in signal transduction, cell cytosis and lipid regulation (Simons and Ikonen, 

1997; Parton, 2003; Mouritsen, 2005). However, the identity of caveolae as a type of 

the rafts is still controversial (Feigenson, personal communication; Simons and 

Ikonen, 1997; Jacobson et. al., 2007). 

 



8 

 

Figure 1.2.4. Model of lipid rafts and schematic representation of caveolae. The two 

entities share a common feature of the enrichment in sphingolipid and cholesterol. The 

similarity led some researchers to believe that caveolae is a type of lipid rafts. The 

protein caveolin is specifically localized in caveolae and may stabilize its curved 

structure. (The figure is from Razani and Lisanti (2002)) 

 

Inquiries into the physical origin and characteristics of lipid rafts have benefited 

from studies on model membranes (Feigenson, 2009). Contrary to their biological 

counterparts, model membranes have defined compositions and are usually the ternary 

mixtures of lipids, which contain cholesterol, a lipid species with high melting point 

and another lipid species with low melting point. It was observed in model membrane 

studies that lipids in specific conditions and compositions were capable of phase-

separating into two coexisting liquid crystalline phases: the commonly seen liquid-

disordered (Ld or Lα) phase and the relatively seldom observed liquid-ordered phase 
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(Lo). The latter exhibits both characteristics of the liquid crystalline Ld phase by its 

lateral fluidity and those of the gel Lβ phase (see Section 1.3) by its orderly arranged 

hydrocarbon chains (Figure 1.2.5; Ipsen et. al., 1987; Dietrich et. al., 2001; Veatch and 

Keller, 2005). This liquid-liquid immiscibility was speculated to be the physical origin 

of lipid raft formation, with the rafts in the Lo or Lβ phases and the bulk lipid matrix in 

the Ld (Lα) phase (Rietveld and Simons, 1998; Lingwood and Simons, 2010). 

Nevertheless, while the Ld and Lβ phases have been readily observed in cells, the Lo 

phase and the accompanying phase separation phenomenon seen in model systems 

have proven to be experimentally elusive in living cells. This fact raised suspicions 

toward biological relevance of the Lo phase (Kaiser et. al., 2009; Lindwood and 

Simons, 2010) or even toward the very existence of lipid rafts (Munro, 2003; Jacobson 

et. al., 2007). Even though growing experimental evidence has favored the existence 

of lipid rafts, many questions remain to be answered. For example, while membrane 

shapes and curvatures are believed to affect formation of the rafts as well as their 

distribution across membranes (Baumgart et. al., 2003; Pencer et. al., 2008; Roux et. 

al., 2005; Parthasarathy et. al., 2006; Parthasarathy and Groves, 2007; van Meers et. 

al., 2008; Sorre et. al., 2009; Kurczy et. al., 2010), to our best knowledge the 

underlying mechanisms are still unclear. Systematic studies are therefore desired to 

understand whether and how the lipid collective properties, such as the monolayer 

spontaneous curvature (the curvature adopted by a lipid monolayer if it could be 

totally relaxed; see Section 2.2.4 for more details), of non-raft lipids affect lipid rafts 

and their associated membrane proteins. This information may provide insight on the 

mechanisms behind the influences of membrane shape and curvature on the rafts. This 

notion is shared with a recent review on the membrane curvature (Parthasarathy and 

Groves, 2007). It may worth mentioning that the liquid-liquid phase separation 

phenomenon, speculated as the physical basis of the lipid raft model, appeared to be  
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(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 
Figure 1.2.5. Models of gel Lβ phase (a), liquid crystalline Ld (or Lα) phase (b) and 

liquid crystalline Lo phase (c). Blue ellipses are cholesterol molecules. The Lo phase 

possesses hydrocarbon chains with a highly ordered structure while still exhibits fast 

translational diffusion. In contrast, the other two phases exhibit either a highly ordered 

structure (the Lβ phase) or fast translational diffusion (the Ld phase). 
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observed in our cardiolipin system. To our best knowledge, this observation is likely 

to be one of few, if not the only, instances that this phase separation phenomenon is 

seen in a one-component charged phospholipid system. Whether this observation has 

any biological implication is out of our scope. 

 

 

Despite the prominence of bilayer structures, biomembranes are in fact far from being 

flat at times. Membrane-bound organelles and cells per se exhibit rich and complex 

shape geometries, both spatially and temporally. Examples include some intracellular 

organelles, such as endoplasmic reticulum and mitochondria, and some specialized 

cells, such as neurons and some epithelial cells (Figure 1.2.6). These entities display 

highly curved structures in at least parts of their membranes. Cells frequently produce 

transient small membrane-bound vesicles, characterized by high curvatures during and 

after their formation (Figure 1.2.6), to transport molecules among intracellular 

organelles as well as among intercellular entities. Highly curved membrane structures 

are also observed in the proximity of the nuclear pores on cell nucleus surfaces. 

Apparently, maintaining these curved structures is required for proper cell functions 

and indeed is conserved across species (Voeltz and prinz, 2007). Given the abundance 

of the proteins surrounding and within biomembranes, protein-lipid interactions are 

naturally expected to play an important role in this biomembrane deformation. Indeed, 

facilitating the formation of curved biomembrane structures is an important biological 

function of proteins and is carried out through their interactions with lipids (McMahon 

and Gallop, 2005; Parthasarathy and Groves, 2007). Mechanisms of these protein-lipid 

interactions can be roughly classified into two categories: active force application and 

surface area modulation. In the former, proteins deform membranes by attaching onto 

membrane surfaces, say, their banana-shaped domains (BAR domains) as scaffolds 
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Figure 1.2.6. Illustration of a kidney epithelial cell. Some of the highly curved 

structures are marked with red. (The figure is adapted from Simons and Ikonen 

(1997)) 

 

(Peter el. al, 2004; McMahon and Gallop, 2005) or by the forces applied by cell 

cytoskeleton and its motor proteins (Dabora and Sheetz 1988; Yarar et. al., 2005; 

Zimmerberg and Kozlov, 2005). In the second type, the curvatures are produced by 

modulating biomembrane surface areas. Presence of wedge-shaped protein domains 

within biomembranes may modify the surface areas of lipid headgroups relative to that 

of hydrocarbon chain region and effectively bend the biomembranes toward one side 

or the other (McMahon and Gallop, 2005; Ford et. al, 2002). Another strategy 

employed by cells to achieve the surface area modifications is tuning lipid 

compositions in biomembranes by enzymes. Lipid compositions in biomembranes are 

complex and diverse, with some species preferring lamellar structures and some 

favoring curved ones, depending on their molecular shapes (see Section 1.3.3). 
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Producing and concentrating the lipids with curving tendencies would result in 

bending of biomembranes from lamellar structures (Kooijman et. al., 2005; McMahon 

and Gallop, 2005; Parthasarathy and Groves, 2007).  

Not only can proteins modify the physical properties of lipid membranes but 

changes in lipid collective properties would also affect the conformations and 

functions of proteins (Phillips et. al., 2009; Andersen and Koeppe, 2007). 

Mechanosensitive channels and voltage-dependent potassium channels are two 

examples of membrane proteins that are regulated through modulations of the lipid 

collective properties. Activities of the two proteins were seen to be affected by 

mechanical stimuli, such as membrane tension (Yoshimura and Sokabe, 2010; Perozo 

et. al., 2002), and transmembrane electrical potentials (Long et. al., 2005; Jiang et. al., 

2003), respectively. The collective properties relevant to lipid-mediated biological 

activities may include, but are not limited to, the bilayer thickness, the monolayer 

spontaneous curvature (see Section 2.2.4), the monolayer bending modulus (a constant 

measuring the stiffness of a lipid membrane) and the transmembrane electrical 

potential. These factors may not act alone and, as discussed above, can be modulated 

directly by protein activities or indirectly by enzyme-mediated lipid composition 

changes. While the former type of modulations implies the potential mechanisms of 

lipid-mediated protein-protein interactions (Phillips et. al., 2009), the latter reflects a 

long-standing question in the study of biomembranes: why do cells maintain the 

curvature-favoring lipids in their flat bilayer membranes even though this inevitably 

increases the elastic energy stress within the membranes and therefore is energetically 

costly? One of the leading explanations is that retaining the "non-lamellar" lipids (i.e., 

the lipids spontaneously forming curved structures if they could be totally relaxed) 

enables cells to fine-tune the spontaneous curvatures of their membranes within an 
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optimal range, which may be required for proper protein functions and folding 

(Gruner, 1985). Indeed, changes in the spontaneous curvature were shown to shift the 

conductance states of the ion channel alamethicin (Keller et. al., 1993), to regulate the 

activity of the enzyme CTP:phosphocholine cytidylyltransferase (Attard et. al., 2000), 

to distort the structure of the key photosynthetic membrane protein bacteriorhodopsin 

(Kulkarni et. al., 2010), and to shift the equilibrium between two rhodopsin substates 

(Soubias et. al, 2010). In addition to the spontaneous curvature, other lipid elastic 

properties such as the bending modulus are generally considered important factors in 

regulating protein functions (Lundbak et. al., 2010; Lundbak et. al., 2005; Lundbak, 

2006). While the collective properties of membranes are the consequence of lipid-lipid 

interactions and are perturbed by lipid-protein interactions and the immediate 

environments, the same factors also dictate lipid polymorphic phase behavior (Siegel 

et. al., 2006; Chavarha et. al., 2010; Haney et. al., 2010). Therefore, understanding the 

mechanisms behind lipid polymorphism is expected to provide insight on how lipids 

mediate membrane protein functions, how membrane proteins interact with lipids and 

how biomembranes adapt to environmental changes among others. This is also what 

the presented thesis study aspires to do  

Due to their compositional simplicity relative to biomembranes, one-, two- or 

three-component model lipid membranes have long served to elucidate the essentials 

of their more complex biological counterparts, despite the risk of oversimplification. 

In the following section, we will briefly review the fundamentals of lipid 

polymorphism learned from model membranes. Forces driving the lipid polymorphic 

phase behavior as well as its theoretical models will be further discussed in the next 

chapter. 
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1.3 Lipid Liquid Crystals and Gels 

1.3.1 Lipid Phases 

 

Biomembranes are liquid crystals. Maintaining a structure rigid enough to confine and 

regulate the cellular contents while fluidic enough to permit enzymatic reactions 

carried out near and within the structure is a prerequisite for proper cell functions and 

even for the very survival of cells (Collings, 2002). Lipids can form various liquid 

crystalline mesophases, either lamellar or non-lamellar depending on the 

environmental conditions and lipid identity, when they are dispersed in water as a 

single- or two-component model lipid membrane (Gruner et. al., 1985). In this way, 

the liquid crystals formed by lipids are lyotropic liquid crystals, most common of 

which are mixtures of amphipathic molecules and solvents (Figueiredo Neto and 

Salinas, 2005; Khoo, 2007). As discussed earlier, lipid bilayers are the most common 

structures in biomembranes. These structures are designated as lamellar phases. 

According to states of their hydrocarbon chains, the lamellar phases can be further 

categorized into Lα (Figure 1.2.5b), Lβ (Figure 1.2.5a), Lβ' (Figure 1.3.1a), Lc (Figure 

1.3.1b) and other less observed phases, including the Lo phase (Figure 1.2.5c) 

introduced in Section 1.2 (nevertheless, the Lo phase has thus far only been observed 

in multi-lipid component membranes). Among them, Lβ, Lβ' and Lc are in the "gel" 

state rather than in the liquid crystalline state. In the Lα phase, hydrocarbon chains are 

in the fluid state without ordered structures, and lipid molecules exhibit rapid 

translational diffusion. This phase represents the structures commonly seen for 

biomembranes in vivo. When temperature is depressed or other thermodynamic 

parameters (such as pressure) are correspondingly changed, the hydrocarbon chains 

become rigid and lipid self-assembled structures may transform to the Lβ phase, with 

all the hydrocarbon chains perpendicular to the bilayer plane, or to the Lβ' phase, with 
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(a)                                                                    (b) 

 

Figure 1.3.1. Illustrations of the tilted lamellar gel Lβ' phase (a) and lamellar 

crystalline Lc phase (b). (The figure is adapted from Mannock et. al. (2007)) 

 

all the chains tilted in some angles relative to the surface normal. This process is 

conventionally known as the lipid main transition. In these gel phases, the rigid 

hydrocarbon chains are spatially arranged in lattice-like structures, and lipid molecules 

are deprived of or considerably lose their translational diffusivity, making lipid 

membranes display the gel characteristics literally. Compared to the Lα phase, 

hydrocarbon chains in the gel phases stretch farther due to the ordered structures and 

lack of flexibility. The extended hydrocarbon chains are experimentally reflected on 

positions of the X-ray scattering peaks while the ordered hydrocarbon chain structures 

are revealed by sharp peaks in the wide angle scattering regime, in which only diffuse 

peaks are observed for hydrocarbon chains of the Lα phase (see Section 3.2.3 for 

details). If temperature is further depressed, the hydrocarbon chains would obtain 

orientational orders in additional to translational ones, and the crystalline Lc phase is 

formed. 

On the other hand, if temperature is elevated (or again other thermodynamic 

parameters are correspondingly changed) beyond the points where the Lα phase are 
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stable, lipids may display various liquid crystalline phases with distinct non-lamellar 

structures. The non-lamellar structures formed by lipids are classified into two 

categories: the normal or type I phase and the inverted or type II phase (Figure 1.3.2). 

In the normal (type I) phases, lipid self-assembled structures are surrounded by water, 

with their polar headgroups on the surfaces and their hydrophobic chains buried inside 

(oil-in-water structures). These structures are readily observed in daily life when drops 

of cooking oil are dispersed in water. On the other hand, the inverted (type II) phases 

demonstrate the structures in which water are surrounded by dominating hydrocarbon 

chains with the headgroups lining the lipid-water interfaces (water-in-oil structure). 

The lipid preference to the normal or the inverted phases is more or less determined by 

the level of hydration and lipid molecular shapes (see also the discussion in Section 

1.3.3), with higher hydration levels and larger headgroups sizes relative to  

 

(a)                                                          (b) 

Figure 1.3.2. Illustrations of normal or type I (a) and inverted or type II (b) phases of 

lipid non-lamellar structures. Blue color denotes the aqueous environment. 
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hydrocarbon chain regions favoring the normal phases. Therefore, the normal phases 

are usually observed in lipids like surfactants with relative large headgroups (note 

"lipid" is broadly defined here. See the beginning of Section 1.2 for the definition) 

while non-lamellar structures of phospholipids (such as the subject of this thesis study, 

cardiolipin) are usually the inverted phases. The latter is the focus of our discussion 

here. 

The inverted hexagonal phase, or the HII phase, is probably the most well studied 

non-lamellar liquid crystalline phase in lipids (Seddon, 1990). In the HII phase, lipids 

are arranged to form cylinders with water-filled channels in the centers and with the 

hydrocarbon chains spreading out from the lipid-water interfaces (Figure 1.3.3). These  

 

 

Figure 1.3.3. Structure of the lipid liquid crystalline HII phase viewed from different 

angles. Red stars mark the positions where the hydrocarbon chain packing constraints 

arise (see the text). An energetically forbidden vacuum (red triangle) will appear if all 

the hydrocarbon chains are fixed in an identical length. (The left panel is adapted from 

Tresset (2009)). 
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channels are conventionally known as water cores. The HII cylinders are arranged in a 

2-D hexagonal lattice when they are viewed in cross-section. As noted in Figure 1.3.3, 

voids appear between cylinders when they are piled with one another. In order to fill 

the voids, hydrocarbon chains located in different positions along the water core 

circumstances have to stretch differentially. This differential stretching results in an 

energy cost and is one of the competing factors dictating lipid phase preference (see 

Section 2.2.3 for more details; Kirk and Gruner, 1985; Gruner, 1985). 

Another important group of lipid non-lamellar structures are the inverted 

bicontinuous cubic phases or the QII phases (Shearman et. al, 2006; Seddon and 

Templer, 1993; Tate et. al., 1991). These phases have drawn much experimental and 

theoretical interest not only for their fascinating complex structures but also for their 

speculated biological roles: understanding of the QII structures and the transition 

mechanism from the Lα phase is believed to elucidate biomembrane fusion processes 

(Siegel et. al., 2006; Luzzati, 1997). The QII phases are also of great use in membrane 

protein crystallization and act as a substitute of cell membranes in the crystallization 

process (Caffrey, 2008). Unit cells of the QII phases exhibit cubic crystallographic 

symmetries. Within a QII unit cell, lipid monolayers are modeled as draping on either 

sides of infinitely periodic minimal surfaces or IPMS (Andersson et. al., 1988; Mariani 

et. al., 1988), where the minimal surfaces are the surfaces with zero mean curvature at 

every point on the surfaces (note this does not necessarily mean the surfaces are flat! 

They can be curved while still having zero mean curvature everywhere on the 

surfaces. See Figure 2.2.2 and Section 2.2.4 for more details). The imaginary IPMS is 

in the midplane of a lipid bilayer (Figure 1.3.4) and extends continuously to fill the QII 

unit cell. Divided by this continuous lipid bilayer are two separate but intertwined 

continuous water channels; the structure is therefore called "bicontinuous". The most 
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Figure 1.3.4. Unit cells of the lipid liquid crystalline QII phases with the space groups 

of Im3m, Pn3m and Ia3d (from left to right). Lipid bilayers wind through the unit cells 

along the IPMS of Plumber’s nightmare, Double diamond and Gyroid (from left to 

right) and separate the water channels into two independent but intertwined networks. 

(The figure is adapted from Squires et. al. (2009)) 

 

commonly observed lipid QII structures are those constructed upon the IPMS of 

Schwartz diamond (denoted as D or the double diamond), Schwartz primitive (P or the 

plumber's nightmare) and Schoen gyroid (G or the gyroid), which in turn exhibit cubic 

symmetries with the crystallographic space groups of Pn3m ( D
IIQ ), Im3m ( P

IIQ ) and 

Ia3d ( G
IIQ ), respectively (Shearman et. al., 2006). There appears to be a universal 

relationship in the hydration level among these three phases, with the plumber's 

nightmare structure having the highest water content and the gyroid phase the least 

(Shearman et. al., 2010). 

When the water content is drained, or equivalently the monolayer mean curvature 

decreases beyond some points, usually where the HII phase is stable and dominating, a 
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Water Core 

lipid self-assembled structure may transform to one of the inverted periodic micellar 

phases before becoming an isotropic inverted micellar solution exhibiting no long-

range orders (Seddon et. al., 2000; Seddon and Templer, 1995). In contrast to the 

bicontinuous QII phases, the micellar phases are "discontinuous" structures in which 

only the hydrophobic volumes (in the case of type II phases) extend continuously to 

fill the unit cells, and the hydrophilic volumes are confined in discrete quasi-spherical 

space and buried inside the hydrophobic volumes (Figure 1.3.5). Unlike its type I 

counterpart, not many periodic micellar phases were observed in the type II structures. 

A structure in the space group of Fd3m with a cubic symmetry had long been the only  

 

 

Figure 1.3.5. Unit cell of the inverted micellar cubic phase with the space group of 

Fd3m. The unit cell is comprised of two types of inverted micelles, whose positions 

are marked with two types of spheres. The enlargement shows the two different 

micelles, which are in quasi-spherical shapes with water cores buried inside and  

hydrocarbon chains spreading out from centers. (The figure is adapted from Seddon et. 

al. (2000)) 
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observed inverted periodic micellar phase until a recent study expanded the list by 

adding a structure in the space group of P63/mmc with a hexagonal symmetry  

(Shearman et. al., 2009). As will be discussed in Sections 4.2 and 4.5, a phase 

displaying crystalline-like X-ray scattering patterns was observed in our cardiolipin 

system. This structure was indexed as in the space group of P4 with a tetragonal 

symmetry. Given the low water content in which the phase was observed, the 3-D 

periodicity appears to imply that the structure was in an inverted micelle 

configuration. If confirmed, this phase might be a new entry in the thin list of inverted 

periodic micellar structures.  

 

1.3.2 Phase Sequence 

 

Figure 1.3.6 shows a hypothetical phase diagram of a lipid-water mixture system as a 

function of the monolayer mean curvature. This diagram demonstrates a phase 

sequence expected for the liquid crystalline phases introduced in Section 1.3.1 

(Seddon et. al., 2000; Seddon and Templer, 1995). The Lα phase is in the middle of the 

diagram and represents the structure with a nearly zero curvature. Magnitude of the 

mean curvature increases in either direction from the center. Curvatures of the inverted 

phases are designated as negative, with the water-lipid interfaces bending toward 

water, and those of the normal phases as positive. It can be seen that every type II 

structure has its counterpart in the type I phase. The phases between the Lα and 

hexagonal phases (regions b and c in Figure 1.3.6) are the bicontinuous cubic 

structures, and those between the hexagonal phases and isotropic micellar solutions 

(regions a and d) are the periodic micellar phases. However, lipid liquid crystals do 

not necessarily follow this sequence exactly in the real world. Indeed, the well-studied 

DOPE- (dioleoylphosphatidylethanolamine, a lipid with two 18:1 hydrocarbon chains,  
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Figure 1.3.6. Hypothetical phase diagram for a lipid-water mixture system as a 

function of the monolayer mean curvature. The Lα phase is in the middle of the 

diagram and exhibits a nearly zero curvature. As magnitude of the curvature increases 

in either direction, the lamellar phase may transform through the cubic phases (regions 

b, c), the hexagonal phases (regions HII, HI) and the discontinuous micellar phases 

(regions a, d) to isotropic micellar solutions. (The figure is from Seddon et. al. (2000)) 

 

i.e., 18 carbons and one double bond) water mixture systems never form any of the QII 

phases during the Lα↔HII phase transition when they are subjected to a simple 

temperature variation or pressure perturbation. This is because the kinetic barrier 

prevents the QII phases from forming in the experimental time scale; the intermediate 

QII phases can only be induced after the DOPE-water systems are incubated at high 

pressure or under pressure/temperature cycling across the Lα↔HII transition points (So 

et. al., 1993; Shyamsunder et. al., 1988). Some studies even disputed validity of the 
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Lα↔QII ↔HII sequence and argued that Lα↔QII and Lα↔HII actually follow different 

paths (Siegel, 1999).   

 

1.3.3 Factors Determining the Phase Behavior 

 

Many factors may affect lipid phase preference. Most of these factors involve 

effects of the monolayer spontaneous curvature. The manifest time-averaged 

molecular shape of a lipid is one of the characterizations of a polymorphic phase 

(Figure 1.3.7). It reflects the relative cross-sectional areas of headgroups and 

hydrocarbon chain region among others. Lipid molecules with nearly zero 

spontaneous curvatures prefer the Lα phase when they are lumped together. On the 

other hand, lipids with manifest large headgroups or hydrocarbon chain regions tend to 

form non-lamellar phases. The most abundant lipid species in biomembranes, 

phosphatidylcholine (PC), is a typical example of the former type. This may explain 

the prominence of bilayer structures in biomembranes. However, another common 

lipid species in biomembranes, phosphatidylethanolamine (PE), is a typical wedge-

shape preferring. Its presence imposes the elastic stress within the lamellar 

biomembranes. Temperature is another important factor that can dictate the assumed, 

time-averaged molecular shape of a lipid. When temperature is elevated, stronger 

thermal motions expand the space occupied by hydrocarbon chains and facilitate 

trans- to gauche-isomerization of carbon-carbon single bonds of the chains. These 

phenomena consequently favor the non-lamellar structures. Similarly, electrostatic 

interactions arising from the headgroups of charged lipids also affect the averaged 

lipid molecular shapes. The subject of this thesis study, cardiolipin, is a typical 

example. With its bulky quadruple-chained configuration, cardiolipin is expected to 

prefer wedged molecular shape and favor the HII phase. However, electrostatic lateral  
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(b) 
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Figure 1.3.7. Lipids with three types of resultant "molecular shapes": molecules with 

cylindrical shapes are in the lamellar phases (a); molecules with wedged shapes are in 

the inverted non-lamellar phases (b) or the normal non-lamellar phases (c), depending 

on the relative sizes of headgroups and hydrocarbon chain region, as well as other 

interactions. 
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repulsion among the charged headgroups forces cardiolipin molecules to adopt a 

cylindrical shape volume and a lamellar structure in the physiological condition. 

Screening the surface charges by adding counterions (Rand and Sengupta, 1972; 

Vasilenko et. al., 1982; Loosley-Millman, 1982; Seddon et. al., 1983), by protonation 

(Seddon et. al., 1983) or by mixing cardiolipin with a cationic lipid (Lewis and 

McElhaney, 2000) usually restores the average wedged shaped geometry and 

facilitates formation of the HII phase.  

Given the importance of hydrophobic interactions in self-assembly of amphipathic 

molecules, it is not surprising that hydration plays a significant role in determining the 

phase behavior of lipid-water mixtures (Rand and Parsegian, 1989). In general, lower 

hydration levels favor the structures with more negative monolayer mean curvatures, 

as shown in Figure 1.3.6 (Seddon and Templer, 1995). Sometimes this may simply be 

the result of a geometrical constraint: water molecules are too few to construct a 

lamellar phase. Other mechanisms of the hydration contributions will be further 

discussed in Section 2.2.2.   

As discussed in Section 1.2, proteins are capable of modifying biomembrane 

shapes. This may be carried out through their influence on the lipid phase behavior. 

The mechanisms include hydrophobic mismatches (the discrepancy in thickness of 

hydrophobic parts of lipids and proteins) and the monolayer curvature modulations 

induced by protein shapes (Phillips et. al., 2009; Haney et. al., 2010; Marsh, 2008). 

Indeed, the Lα↔QII and Lα↔HII phases transition temperatures were observed to 

decrease with increasing concentration of an α-helical transmembrane peptide, WALP. 

Studying the protein inclusion effects on the lipid phase behavior also provides insight 
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on functional mechanisms of pulmonary surfactant proteins, SP-B and SP-C, and 

antimicrobial peptides (Chavarha et. al., 2010; Haney et. al., 2010).   

 

1.4 Cardiolipin and the Phase Transitions 

 

As with DOPS and other anionic phospholipids, charges on the cardiolipin headgroups 

apply significant influences on its phase behavior, presumably through their effects on 

the spontaneous curvature (see Section 2.2.5). Removal of the headgroup charges has 

seen a phase transition to the (single) HII phase from otherwise monotonic lamellar 

structures. This understanding for cardiolipin was historically established with the 

observations on the bovine heart cardiolipin (a natural mixture of various cardiolipin 

species, extracted from the inner mitochondrial membranes of beef hearts). Rand and 

Sengupta (1972) had found that divalent cations, calcium, magnesium and barium 

ions, precipitated the bovine heart cardiolipin into the HII structures (the precipitation 

should indicate the excess water condition of the cardiolipin) from the initial lamellar 

phase. A later study by Seddon et. al. (1983) supplemented the observation by 

studying the headgroup charge modification of the bovine heart cardiolipin with a pH 

control and sodium chloride addition; cardiolipin formed the HII phase at pH < 2.8 or, 

at pH = 7, in the NaCl concentration > 1.6 M. Comparing the two studies found that at 

a given temperature the minimum concentration required for the HII phase formation 

was considerably higher for sodium ions (1.6 M) than for calcium ions (1 mM) and 

other divalent cations. This may be associated with the two negative charges carried 

by a cardiolipin molecule. Indeed, it was found that formation of the HII phase induced 

by mixing tetramyristoyl-cardiolipin (C14:0) with a single-charged cationic lipid, DM-

TAP (1,2-dimyristoyl-oxy-3-N,N,N-trimethylaminopropane, with the identical type of 

hydrocarbon chains to that of tetramyristoyl-cardiolipin) occurred at the lowest 
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observed temperature when the molar ratio of the cardiolipin and DM-TAP was in 1:2; 

in other words, the transition temperature was at the lowest when the resultant lipid 

mixtures were electrically neutral. In addition, an important mitochondrial protein, 

cytochrome C, was seen to induce the HII phase formation within pure cardiolipin 

membrane or the lipid membranes containing a substantial cardiolipin composition 

(De Kruijff and Cullis, 1980). This fact may imply the need of the non-lamellar 

structure-forming ability of cardiolipin for the proper function of a mitochondrion.  

The type of hydrocarbon chains is also an important factor in determining the 

cardiolipin phase preference. A study by Vasilenko et. al. (1982) compared the phase 

behavior of the bovine heart cardiolipin (containing 88.5% C18:2 cardiolipin) with 

that of the cardiolipin extracted from the bacterium, Bacillus subtilis (containing 

mostly the cardiolipin with saturated hydrocarbon chains; ~50% C15:0) when the two 

cardiolipin species were mixed with divalent cations. The authors found that for a 

given type of counterions the lamellar-HII phase transition temperature was 

significantly lower in the case of the bovine heart cardiolipin. Indeed, a more 

controlled experiment carried out for the synthetic cardiolipin revealed that 

tetraoleoyl-cardiolipin (C18:1, the same cardiolipin species employed in this thesis 

study) exhibited the Lα↔HII phase transition at 25 °C and in the sodium chloride 

concentrations ≥3.5 M whereas tetramyristoyl cardiolipin remained in the lamellar 

phases even when the temperature reached 60 °C and the NaCl concentration to 6 M 

(Sankaram et. al., 1989). Taking together their observations and those from other 

studies, the authors concluded that higher unsaturation and longer length of 

hydrocarbon chains lowered the threshold for the HII phase formation. 
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(a) 

 

(b) 

 
Figure 1.4.1. Chemical structure (a) and space filling model (b) of a cardiolipin 

molecule. In (b), red spheres are oxygen atoms; pink spheres are phosphorus atoms; 

dark yellow spheres are sodium ions; green spheres are carbon atoms; white spheres 

are hydrogen atoms. The models are from our lipid supplier, Avanti Polar Lipids, Inc. 

(http://www.avantilipids.com). 

 

Given the unique quadruple configuration (Figure 1.4.1), it is not surprising to 

know that the number of hydrocarbon chains present in a molecule is crucial to the 

cardiolipin phase behavior. In their nuclear magnetic resonance and X-ray diffraction 
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study, Powell and Marsh (1985) prepared the cardiolipin molecules with different 

hydrocarbon chain configurations by acylating or deacylating the bovine heart 

cardiolipin. The authors found that, with the sodium chloride concentrations up to       

3 M, the cardiolipin derivatives with double or triple hydrocarbon chain configurations 

could only assume the lamellar or micellar phases at room temperature whereas the 

derivative with five chains were in the HII phase even without counterions present. 

Only the ordinary cardiolipin molecules exhibited a counterion-induced lamellar-HII 

phase transition in the same condition. The quadruple hydrocarbon chain configuration 

of cardiolipin may therefore render cells the ability of controlling the non-lamellar 

structure-forming propensity by modifying local ions concentrations.  

 

In the next chapter, the factors introduced in Section 1.3.3 will be analyzed in 

terms of the underlying intermolecular forces relevant to cardiolipin. Theoretical 

models incorporating these forces to explain the lipid phase behavior will also be 

reviewed. 
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CHAPTER 2 

LIPID POLYMORPHIC PHASE TRANSITION 

2.1 Introduction 

 

Driven by hydrophobic interactions, amphipathic lipids tend to aggregate and self-

assemble into various structures when dispersed in water or aqueous solutions. 

However, hydrophobic interactions alone cannot explain polymorphisms and 

structural features exhibited by lipids. In this chapter, I will discuss forces and 

interactions that are commonly observed to affect lipid phase preference and spatial 

arrangements, and also the theoretic treatments attempting to model the polymorphic 

phase behaviors based on these forces and interactions. 

 

2.2 Forces and Interactions within Lipid Self-Assembled Structures 

2.2.1 van der Waals Force 

 

The van der Waals force is one of the most common molecular interactions and is 

present between every pair of objects. The interaction arises from spontaneous 

fluctuations of electric dipole moments of molecules and thus is electrostatic in nature. 

The interaction can be either attractive or repulsive, depending on the nature of the 

two interacting objects and the medium in between (Dzyaloshinskii et. al., 1961). For 

identical or similar molecules, the van der Waals force between two entities is 

attractive (Leckband and Israelachvili, 2001). Therefore, the attractive van der Waals 

force is a natural presence between lipid molecules and between their aggregates. The 

strength of the interaction increases monotonically as two objects approach to each 

other, and then reaches a maximum when the inter-object distance is the sum of the 
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respective van der Waals radii. Further shortening the inter-object distance is 

prohibited due to the Pauli exclusion principle, among others.  

In a multi-lamellar configuration of neutral lipids, where multiple lipid bilayers are 

stacked and separated with inter-bilayer water volumes, van der Waals forces between 

neutral the lipids compete to determine the inter-bilayer distances. As water content 

increases, the water volumes expand indefinitely until the attractive van der Waals 

force counterbalances other repulsive forces (discussed below) and prevents further 

swelling of the water layers. Excessive water added to the system would then build up 

outside the multilayer structure and coexists with it. The multi-lamellar structure is 

therefore in the excess water condition. Similar phenomena are also observed in lipid 

liquid crystals in the inverted hexagonal (HII) and inverted cubic (QII) phases. 

However, presumably due to the permanent electrostatic force, excess water points 

may never be reached in charged lipids, and the water volumes can expand 

indefinitely, provided counterions do not fully screen charges on headgroups. 

Mysteriously as will be presented and discussed in Chapter 4, negatively charged 

cardiolipin and water mixtures were observed to form a gel phase in the excess water 

condition even in the absence of external counterions. This observation may imply 

presence of some peculiar attractive interaction(s).  

The van der Waals force plays an important role in lipid phase behavior. The 

importance of van der Waals forces in the lipid main transition (i.e., Lα↔ gel 

transition) has long been recognized (Tristram-Nagle and Nagle, 2004). To carry out 

the main transition, lipids in a gel phase must overcome the attractive van der Waals 

force among their tightly packed hydrocarbon chains to form flexible chains found in 

the liquid crystalline Lα phase. This energy requirement accounts for more than half of 

the enthalpy in the melting (Tristram-Nagle and Nagle, 2004). Nevertheless, how the 
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van der Waals force affects liquid crystalline polymorphic transitions is not so well 

studied as in the case of the main transition. Systematic studies on how hydrocarbon 

chain length affects lipid polymorphic phase behavior might shed light on the role of 

van der Waals force in liquid crystalline phase transitions (Mannock, et. al., 2007; 

Brito, et. al., 2008). However, the main experimental challenge still lies in 

distinguishing effect of the van der Waals force from those of others. Indeed, as 

discussed in Gruner (2005) van der Waals force may determine lipid polymorphic 

phase behavior indirectly through its influence on the lipid monolayer spontaneous 

curvature (see Section 2.2.4). Decomposing the effects on the spontaneous curvature 

into those of van der Waals force and of others (e.g., electrostatic interactions 

discussed in Section 2.2.5) may pose a significant obstacle for experimenters. Perhaps 

due to this reason, few, if any, studies addressed the importance of van der Waals 

force in lipid polymorphic transitions. One of the few theoretic studies is reported by 

Kozlov et. al. (1994) and involves the DOPE-water system, which displays an unusual 

HII→Lα→HII phase transition sequence when dehydrated below 22 °C (Gawrisch et. 

al., 1992). This study explicitly expresses van der Waals force in the total free energy 

of the Lα phase while only implicitly incorporates that interaction into the monolayer 

spontaneous curvature for the HII phase, another example of the intimacy between van 

der Waals force and the elastic parameter. This energy model quantitatively agrees 

with the experiment but even with the van der Waals force neglected, the model can 

still reproduce the experimental result well. In other words, the van der Waals force 

appears to be insignificant in the Lα↔HII phase transition (Kozlov et. al.,1994). In 

contrast, another theoretical study by Siegel and Tenchov (2008) found that PE 

membranes must overcome the attractive van der Waals force to expand the inter-

bilayer distances before being able to form a QII phase. Although the model 

successfully reproduced qualitative features of the Lα↔QII↔HII transition observed in 
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experiments, the van der Waals force was still not explicitly formulated in the 

complex geometries. Nevertheless, these two theoretical contributions have provided a 

good starting point for quantitatively understanding the role of van der Waals force in 

lipid polymorphic phase transitions. For our cardiolipin system, the Lα↔HII transition 

is the only confirmed lamellar-non-lamellar phase transition in the experimental 

conditions covered here. The van der Waals force may therefore either be contained in 

the consideration on the spontaneous curvature or be less important to our discussion.  

 

2.2.2 Hydration Interactions 

 

Hydration interactions are an important counterforce against the attractive van der 

Waals interaction and prevent lipid self-assembled structures from collapsing. It is 

believed that the hydration repulsion originates from resistance of water molecules 

orderly arranged on a hydrophilic surface from being disrupted and expelled (Marcelja 

and Radic, 1976). Some reports claim that hydration interactions may not always be 

repulsive and, under certain circumstances, may alternate between repulsion and 

attraction when two interacting objects approach to each other (Leckband and 

Israelachvili, 2001). For flexible, hydrophilic surfaces, such as lipid bilayers in the Lα 

phase, hydration interactions are always repulsive. However, hydration interactions 

behave much differently when the two interacting hydrophilic surfaces are smooth and 

rigid, features that may characterize lipid bilayers in the Lβ phase. In order to further 

understand the origin and nature of hydration interactions, Israelachvili and Pashley 

(1983) measured the intermolecular force as a function of separation between two 

molecularly smooth mica surfaces immersed in 1 mM KCl solution. When the inter-

surface distance were greater than 30 Å, potassium ions were partially adsorbed on the 

mica surfaces in the studied condition, and the measured force versus separation 
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relation closely followed the prediction of electrical double-layer theory (see Section 

2.2.5 and Equation 2-14). Remarkably, the intermolecular force was observed to 

oscillate dramatically with a mean periodicity of ~2.5±0.3 Å when the inter-surface 

distance was smaller than 15 Å. While the intermolecular force was still largely 

repulsive, this repulsive force turned to an attractive one when the two surfaces were 

at 0, 2.8±0.3 Å or 5.6±0.3 Å apart. These distances, 2.8±0.3 Å and 5.6±0.3 Å, were 

roughly the thickness of one and two water layers, respectively.  

Israelachvili, Wennerstrom and colleagues argued that the oscillatory feature 

observed in the mica system was a natural consequence of water molecules ordering 

on polar surfaces (Israelachvili and Pashley, 1983; Israelachvili and Wnnerstrom, 

1996; Leckband and Israelachvili, 2001). This is a striking contradiction to the 

conventional belief regarding hydration interactions, which views the interaction as 

being repulsive in nature. The researchers also suggested that the exponentially 

decaying repulsive hydration interactions, commonly observed for flexible surfaces 

such as lipid bilayers in the Lα phase, are a smearing-out result of the supposedly 

oscillatory feature. However, this view of hydration interactions is still controversial 

and demands more theoretical and experimental efforts. Interestingly, the charged 

surface and rigid structure of cardiolipin bilayers in the gel phase appear to bear a 

close resemblance to those of the mica system studied in Israelachvili and Pashley 

(1983). Moreover, separations of two cardiolipin gel bilayers were observed to be far 

shorter than 15 Å (see Section 4.3.3). It is therefore tempting to apply the oscillatory 

view of hydration interactions to explaining why the charged cardiolipin bilayers 

could be in the excess water condition. This speculation will be further discussed in 

Sections 4.3.3 and 5.1.3. 
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2.2.3 Hydrocarbon Chain Packing Frustration 

 

Hydrocarbon chain packing frustration arises from the need to differentially stretch 

hydrocarbon chains to fill the hydrophobic space in curved, inverted configuration of 

lipids (Kirk et. al., 1984; Kirk and Gruner, 1985; Gruner, 1989; Tate et. al., 1991; 

Shearman et. al., 2006). The packing stress was proposed, along with the monolayer 

elastic energy (Section 2.2.4), to model the competing interactions that drive the 

Lα↔HII phase transition of lipids. In the HII phase, the water-lipid interface along 

circumstance of a water core is speculated to arrange circularly to reduce the energy 

cost arising from large local monolayer curvatures inevitable with non-circular shapes. 

Circular shape of this interface was confirmed experimentally in Turner and Gruner 

(1992) and Pan et. al. (2006). However, Tuner and Gruner (1992) also found that the 

water-lipid interface in the HII structure could deviate from a circular shape 

considerably when repeat distance of its unit cell was greater than ~75 Å. The authors 

ascribed the observation to the energetic cost of stretching lipid hydrocarbon chains 

relative to their relaxed lengths, particularly on locations where three unit cells of the 

HII phase met (Figure 2.2.1). Since the radial distance from center of the unit cell to its 

corners is longer than to its side, hydrocarbon chains must stretch farther to fill the 

otherwise energetically unfavorable voids in the corners. This constraint limits the 

conformations accessible to hydrocarbon chains and thus incurs an entropic cost to the 

system. When the unit cell dimension expands, the volumes in the corners enlarge and 

the chains are required to stretch even farther to fill the ever expanding space. To 

compensate this energetic cost, the water-lipid interface deforms to minimize 

hydrocarbon chain packing stress. Beyond certain unit cell dimensions, the energetic 

cost of staying in the HII phase exceeds that of bending monolayers away from their 
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Figure 2.2.1. Unit cell of the HII phase. If the hydrocarbon chains are all in a fixed 

length, an energetically forbidden void would emerge in the hydrophobic volume, as 

marked by a square. An arrow illustrates ζ  (see the text). 

 

spontaneous curvatures. As a result, lipid molecules transform from the HII phase to 

the Lα phase. Accordingly, adding free hydrocarbons to lipid-water mixtures is 

expected to relieve hydrocarbon chain packing stress by filling the voids with the 

hydrocarbons and shift lipid phase preference to the HII phase (Gruner, 1985). Indeed, 

Kirk and Gruner (1985) reported that adding 5 % dodecane or tetradecane to a DOPE-

water mixture could reduce its Lα-HII phase transition temperature significantly. Tuner 

and Gruner (1992) also observed the restoration of circular shape in the water-lipid 

interface when a small amount of alkane was present. 

Several theoretical studies have attempted to model hydrocarbon chain packing 

stress (Kirk, 1984; Tate, 1987; Duesing et. al., 1997). The modeling starts with a 

Hooke’s Law-based formulation to quantify energy costs of stretching or compressing 

hydrocarbon chains from the relaxed equilibrium length rl , 
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 2)1( rp lkg −= , (2-1) 

 

where k is the stretching rigidity and l is the actual hydrocarbon chain length. Taking 

into account the upper and lower limits on the hydrocarbon chain length, maxl  and minl , 

Equation 2-1 becomes,  
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where k’ is a stretching constant and )(lf  is a function which makes pg  minimal 

when rll = . By solving Equation 2-2 for the extreme values, the simplest form of 

)(lf  is found to be 2)( rll − . Equation 2-1 is therefore only the first term of the Taylor 

expansion of Equation 2-2 and k is, 
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With the assumption of a constant and homogeneous curvature in the water/lipid 

interface, the average over the interfacial surface area A of the first term of the Taylor 

expansion is: 
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where ζ  is the distance between the midpoints of the hydrophobic and hydrophilic 

regions of an inverted lipid structure (for example the HII phase see Figure 2.2.1;  

adopting this framework may allow generalization of the obtained formulation beyond 
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the HII phase. See Duesing et. al. (1997) for more details), and rζ  is the corresponding 

distance when hydrocarbon chains are in their relaxed lengths. Because the averaged 

packing energy >< pg  is minimal when ζ = ζr, by solving the equation, 
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one can obtain, 
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This indicates that rζ  is in fact the average of ζ over the entire surface area A. 

Accordingly, one can finally obtain: 
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where dimensionless pε  is denoted as the packing factor in Duesing et. al. (1997). It 

was noted by the authors that pε , the normalized variation of ζ, could be used to 

quantify how energetically favorable a certain way of packing hydrocarbon chains into 

hydrophobic space is, with a smaller value representing a lower energetic cost. By 

their calculations, Duesing et. al. (1997) found that, compared to other possible 

arrangements, lipids in a structure with a cylindrical lipid-water interface had the 
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lowest pε  value of 1.865 x 10-3
 when those lipid-water cylinders were arranged in a 

hexagonal lattice (i.e., the experimentally observed arrangement of the HII phase). The 

consistency with the experimental observation may support validity of this modeling. 

Also implied in Equation 2-7 is that, for a given lipids spatial arrangement (i.e., a 

given pε  value in this context) the packing energy >< pg  of lipids should vary with 

the monolayer thickness and mean curvature (see Equation 2-8 in the next section) 

because rζ  is a function of the thickness and curvature (for the HII phase, rr lR +=ζ , 

where R is radius of the water core). This relationship between the packing energy 

>< pg  and the radius of water core R may successfully quantify the expectation that 

lipids arranged in the HII phase have a higher packing energy cost when their water 

core radius becomes larger (Gruner, 1985; Gruner, 1989).  

 

2.2.4 Elastic Energy 

 

As discussed in the Section 1.3.3, a lipid molecule exhibits an intrinsic spontaneous 

curvature according to its chemical structures, and this determines spatial arrangement 

of lipids when they are dispersed in, say, water. Theoretically, when external 

constraints (e.g., hydrocarbon packing stress discussed in Section 2.2.3) are absent, 

lipids should self-assemble into a structure fully reflecting their spontaneous 

curvature. Since external constraints are inevitable in many cases, particularly in vivo, 

lipids are often forced to adopt a structure different from the optimal one. The energy 

cost thereby arisen is the origin of the elastic energy. The elastic energy can be 

conceptualized in the context of the monolayer curvature and lipid elastic properties. 

Figure 2.2.2 demonstrates definition of the monolayer curvature, in which the lipid-

water interface is represented by a thin, curved sheet; the principal curvatures, 1/R1 

and 1/R2, of any given point on the sheet are defined on two perpendicular planes. The 
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Figure 2.2.2. Definition of the principal curvatures, R1 and R2, for a given point P on a 

curved lipid-water interface. The two principal curvatures are defined individually on 

two planes that both contain the surface normal on P but are perpendicular to each 

other. (The figure is adapted from Tate et. al. (1991)). 

 

principal curvatures in turn define the monolayer mean curvature C and the Gaussian 

curvature G via, 
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For a cylindrical geometry (like the HII phase), C is reduced to RC 2/1= , where R is 

the water core radius, and G is to zero; for a sphere (like a lipid micellar structure), C 

is to RC /1= , where R is the sphere radius, and R is to 2/1 RG = . Conventionally, 

curvature of the lipid-water interface bending towards water is denoted as negative 

R2 
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and towards lipid as positive. Therefore, the mean curvature can still equal to zero 

even when the surface is bent if R1 and R2 are in the same value but different signs 

(such as the case shown in Figure 2.2.1). The mean curvature of a lipid monolayer 

more or less reflects the desired "molecular shapes" of the constituent lipids and, when 

in the absence of external constraints, is called the monolayer spontaneous curvature 

0C  for that type of lipids in a given conditions (e.g., temperature and pressure). A 

lipid monolayer with the mean curvature equivalent to the spontaneous curvature is 

regarded as having minimal elastic energy. However, because of external constraints 

lipids may assume a structure with the mean curvature deviating from the spontaneous 

curvature, and an elastic energy penalty Eg  arises accordingly, 

 

 GKCCKg GE +−= 2
0 )(2 , (2-9) 

 

where K is the bending modulus and KG is the Gaussian modulus of lipids. These two 

elastic properties of lipids also vary with environmental conditions (e.g., see the 

discussion in the next section). The first term of Equation 2-9 quantifies the 

expectation that an energy penalty will be incurred to the system when a lipid 

monolayer is bent from its optimal mean curvature. However, physical meaning of the 

second term is not so straightforward and, given the difficulty in measuring the 

Gaussian modulus, this term is sometimes neglected in discussing free energies of 

lipid liquid crystals (Gruner, 1985; Gruner, 1989; Tate et. al., 1991). This omission 

appears to be legitimate in some cases because the Gaussian curvature vanishes in the 

geometries of the Lα and the HII phases. However, it has been demonstrated that the 

Gaussian term is important in determining free energies of the QII phases and of the 

hypothetical intermediate structures in the lamellar-non-lamellar phase transitions (see 

Section 2.3.3; Shearman et. al., 2006; Siegel and Kozlov, 2004; Siegel, 2008). The 
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latter is important to understanding the lamellar-non-lamellar transition mechanism 

and may also shed light on how biomembranes proceed in a fusion process. It should 

be noted that Equation 2-9 only expresses the elastic energy Eg  to the quadratic term. 

It is suggested that the fourth-order term may be required to correctly model free 

energies of the QII phases (Siegel, 2010).  

A related question in this topic is on what surface should this elastic energy be 

calculated. This question is solved spontaneously in the lamellar phases but may pose 

a problem in other geometries. For example, the monolayer mean curvature of a QII 

structure determined on the plane of the hydrocarbon chain termini is clearly different 

from that defined elsewhere because the chain termini locate on IPMS (see Section 

1.3.1) and the mean curvature is zero at any point on the plane. A conventional choice 

for defining the elastic energy is the pivotal surface or the neutral surface. The pivotal 

surface is a plane where the cross-sectional area of a lipid molecular remains 

unchanged upon bending; on the neutral surface, bending and stretching deformations 

are energetically independent (Shearmann et. al., 2006). The two surfaces nearly 

coincide with each other when the curvature on the lipid-water interface is not large. 

The elastic energy determined on the pivotal surface and with Equation 2-9 well 

reproduced the measured energy requirement for bending a DOPC/DOPE monolayer 

in the HII phase to a given mean curvature (Rand et. al., 1990).  

 

2.2.5 Electrostatic Interactions 

 

Electrostatic interactions are another important factor that contributes to phase 

preference of charged lipids, such as cardiolipin. Indeed, as discussed in Section 1.3.3, 

electrostatic repulsion among headgroups overcomes the intrinsic wedged shape of 
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cardiolipin molecules endowed by the four hydrocarbon chains and favors formation 

of the Lα phase in physiological conditions. Neutralization of charges on the 

headgroups by means such as adding counterions or lowering pH often results in phase 

transitions of cardiolipin to the HII phase (Rand and Sengupta, 1972; Vasilenko, et. al, 

1982; Loosley-Millman et. al., 1982; Seddon et. al., 1983). In this thesis study, we 

may decompose influences of electrostatic interactions on lipid phase preference into 

two aspects: the contribution to the inter-bilayer potential or the equivalents for other 

geometries (Kirk et. al., 1984; Cowley et. al., 1978; Anderson et. al., 2010), and the 

contribution to lipid elastic properties discussed in Section 2.2.4 (Mitchell and 

Ninham, 1989; Lekkerkerker, 1989; Winterhalter and Helfrich, 1992; Taheri-Araghi 

and Ha, 2010). For the former, a model based on the electrical double layer theory was 

proposed for charged surfaces with different geometries (Israelachvili, 1992; 

Leckband and Israelachvili, 2001). In the double layer model, a charged surface is 

electrically balanced by layers of ions dispersed in the solution surrounding the 

surface; the first layer closer and more strongly bound to the charged surface is the 

Stern layer, and the layer consisting of free counterions and more removed from the 

surface are known as the diffuse layer. By solving the Poisson-Boltzmann equation, 
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ψ −−=∇  (2-10) 

 

where )(xψ  is the electrostatic potential; x is the distance with x = 0 being halfway 

between two surfaces; z and 0ρ  are the valence and number density at x = 0 of 

counterions, respectively; e is the electronic charge; 0ε  and ε   are the vacuum 

permittivity and dielectric constant of water, respectively; BK  is the Boltzmann 

constant; and T is the absolute temperature. With suitable boundary conditions, one 
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can obtain )(xψ  and )(xρ , and then derive the free energy per unit area elg  for the 

double layer model, 
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where 1−κ  is the Debye screen length; ∞ρ  is the ion number density in the bulk; and 

D is the distance surfaces. By integrating Equation 2-11 over charged surfaces, 

Leckband and Israelachvili (2001) obtained the electrostatic interaction energies for 

different geometries (see Table 3 in the cited report). Functional forms specific for 

lipid liquid crystals in the lamellar, HII and micelle phases are reported in Kirk et. al. 

(1984). By combining the electric double layer theory with the attractive van der 

Waals force, one will obtain the Derjaguin-Landau-Verwey-Overbeek (DLVO) 

theory, and in the case of two charged spheres the DLVO interaction potential may be 

written as, 
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where R is the radius of the spheres and H is the Hamaker constant for the van der 
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Waals force. The first term models the electrostatic interactions based on the double 

layer theory and the second describes the van der Waals force (note lipids forming a 

sphere with a large radius are equivalent of being arranged in a lamellar configuration 

as is the case of cell membranes). The theory has successfully reproduced many 

experimental results (Anderson et. al., 2010; McGuiggan and Pashley, 1988; Pashley 

et. al., 1986). However, it fails in more complicated cases, for example, when the 

distance between surfaces is shorter than ~20 Å, presumably due to increasing 

significance of other interactions (Leckband and Israelachvili, 2001). The DLVO 

theory may also be inapplicable to the case where counterions interact with charged 

surfaces strongly because the theory is constructed on the assumption of constant and 

uniform surface charge density (Taheri-Araghi and Ha, 2010). Further refinements to 

the DLVO theory are therefore needed to more accurately model the cases for lipid 

bilayers because the distances between bilayers are sometimes well below 20 Å and 

strong interactions between lipid and counterions are not rare. 

In addition to inter-bilayer repulsion, electrostatic interactions may also modify 

lipid elastic properties via its lateral repulsion. The relationship between electrostatic 

interactions and lipid elastic properties was addressed in several theoretical and 

computational studies. Here, we will focus on those associated with the monolayer 

bending modulus K and spontaneous curvature 0C  (see Equation 2-9), which are 

directly related with this thesis study. In Lekkerkerker (1989), the Poisson-Boltzmann 

equation (2-10) was solved for spherical and cylindrical geometries in the limit of thin 

double layers (again a large sphere may be regarded as being similar to the 

configuration of cell membranes). The resultant electrical free energies for the two 

geometries are,  
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with  
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where BK  is the Boltzmann constant; T is the absolute temperature; e is the electronic 

charge; ε  and 0ε are the vacuum permitivity and dielectric constant of water, 

respectively; 1−κ  is the Debye length defined in Equation 2-13; R is radius of  the 

sphere or cylinder; and σ  is charge density of the spherical or cylindrical surface. By 

comparing Equations 2-15 and 2-16 with Equation 2-9, the author derived the 

electrostatic contribution to the monolayer bending modulus, 
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and, in high surface charge densities and low salt concentrations, as, 
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The author noticed that, when using the typical parameters values for lipids, calculated 
elK  was at most barely larger than thermal energy, 1 TK B , and argued that the 

electrostatic effect on the bending modulus was in many cases negligible as most lipid 

membranes exhibited much larger bending moduli of 40-60 TK B . Experimental 

measurements of elK  for SOPC protonated at low pH and for ionic SDS surfactant 

mixtures were consistent with the conclusion (Zhou and Raphael, 2007; Zou et. al., 

2007). In the context of our cardiolipin system, this electrostatic contribution needs to 

be considered only when counterions are present. As will be discussed in the next 

section, the monolayer bending modulus of cardiolipin is estimated to be ~1 TK B  in 

this condition.  

On the other hand, the influence of electrostatic lateral repulsion on the monolayer 

spontaneous curvature is strong and obvious. Experimental measurements of the 

spontaneous curvature 0C  for several charged lipids, DOPS (Fuller et. al., 2003), 

DOPG (Alley et. al., 2008) and DOPA (Kooijman et. al., 2005), demonstrated 

dramatic changes in 0C  values when surface charges were screened by counterions or 

protons. In the case of DOPS, 0C  even changed from an unusually small curvature, 

+1/144 Å-1 to a negative curvature of -1/23 Å-1, even larger than that of the typical 

non-lamellar lipid, DOPE (-1/30 Å-1). This change shifted preferred phase of DOPA 

from a lamellar structure to the HII configuration. It is therefore reasonable to expect 

that the same effect on 0C  is responsible for the HII structure preference of cardiolipin 

in low pH or high counterion concentrations (Rand and Sengupta, 1972; Vasilenko et. 

al, 1982; Loosley-Millman et. al., 1982; Seddon et. al., 1983). Nevertheless, there 

appears to be few, or even no theoretical treatments explicitly formulating the relation 
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of electrostatic interactions and the spontaneous curvature as in the case of bending 

modulus. Even so, electrostatic contribution to the spontaneous curvature is significant 

and not negligible whether compared with the contribution to bending modulus or in 

an absolute term. Therefore, we will regard the electrostatic inter-bilayer repulsion 

(first term of Equation 2-14) and the electrostatic contribution to the spontaneous 

curvature as the two major effects of headgroup charges on phase preference of 

cardiolipin in later discussions.  

 

2.2.6 Other Interactions - Thermal Undulation of Bilayers 

 

In addition to the major interactions introduced above, there are some short-range 

interactions that may often be neglected in some studies. These include but are not 

limited to thermal undulation of bilayers, steric repulsion among lipid headgroups, and 

headgroup-headgroup and headgroup-water hydrogen bonding. Since the latter two 

interactions should be significant only in very short inter-bilayer distances (~3 Å for 

hydrogen bonding) and specific to chemical structure of a lipid, we will focus our 

discussion on thermal undulation of bilayer. Thermal undulation of bilayer is repulsive 

and entropic in nature. When two bilayers approach to each other, shrinking inter-

bilayer volumes limit space available for individual bilayers to carry out thermal 

fluctuations and effectively reduce the conformations accessible to them. Therefore, 

an entropic penalty is imposed to the system and drives expansion of the inter-bilayer 

space. In the case applicable to lipid membranes, this thermally activated entropic 

repulsion Ug  can be expressed as (Evans and Needham, 1987), 
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where T is the absolute temperature; K is the bending modulus; D is the inter-bilayer 

distance; and hP  and hλ  are the coefficient and half of the decay length for this 

repulsion, respectively. The latter two parameters were experimentally determined for 

PCs in Petrache et. al. (1998). Since most lipid bilayers exhibit large bending moduli 

(K ≈ 40-60 TK B ), contribution of thermal undulation to the total free energy is usually 

not considered. However, in a recent coarse-grained molecular dynamics simulation, 

mixing cardiolipin with DOPE or DOPC was found to decrease bending moduli values 

of the initial DOPE or DOPC membranes considerably when surface charges of 

cardiolipin were partially neutralized (Dahlberg and Maliniak, 2010). The bending 

moduli could even be reduced to ~1 TK B  when the cardiolipin ratio in the total lipid 

composition was near 100%. Although this simulation is inconsistent with some 

experiments (e.g., the bending moduli of pure DOPE and DOPC membranes are lower 

that those obtained by experiments), the key observation that the bending modulus 

decreases with the charge density is still agreeable with experiments (Rowat et. al., 

2004). The immediate result observed in this simulation of the bending modulus 

reduction was that pure cardiolipin membranes exhibited strong thermal undulation 

when their surface charges were neutralized. Therefore, the energy contribution from 

thermal undulation appears to be significant enough to be considered when cardiolipin 

surface charges are partially or completely screened.  

 

2.3 Model of Lipid Liquid Crystal Phase Transitions 

2.3.1 Energetics of the Phase Transitions 

 

As discussed in Section 2.2, many forces and interactions contribute to the total free 

energy of a lipid liquid crystal. In Kirk et. al (1984), four interactions were considered 

to establish a free energy model for lamellar-non-lamellar phase transitions. These 
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interactions were hydration interactions, electrostatic interactions, the elastic energy 

and hydrocarbon chain packing stress. A recent study focusing on the Lα↔QII phase 

transitions found the necessity of incorporating an “unbinding energy” term, which 

arises from van der Waals force, into the free energy model to account for observed 

metastability of the QII phases for some lipids (Siegel and Tenchov, 2008). If the 

interactions discussed in Section 2.2.6 are also taken into consideration, a 

comprehensive energy description of lipid phase transitions may include at least seven 

interactions. However, due to lack of a conclusive functional form for some geometry 

and also due to insignificance in the conditions considered here, some interactions, 

such as hydrogen bonding and steric repulsions, are either difficult or unnecessary to 

incorporate into the energetics description here. Moreover, contribution of the 

hydration interactions may not be as important as those of other interactions in 

lamellar-non-lamellar phase transitions and may have been reasonably reflected on 

lipid elastic properties (e.g., the monolayer spontaneous curvature; So, 1992; Kozlov 

et. al., 1994). Given these reasons and the fact that the Lα↔HII phase transition is the 

main lamellar-non-lamellar phase transition observed in this thesis study, we will 

reduce the interactions needed to be considered in our energetics description to 

hydrocarbon chain packing stress, electrostatic interactions, the elastic energy and 

thermal undulation. The last interaction may be important only when surface charges 

of cardiolipin are largely screened by counterions. However, the contribution from 

hydration interactions will still be invoked when we discuss the lipid main transition 

for our cardiolipin system. 

The elastic energy and hydrocarbon chain packing stress have long been suggested 

to be the two major competing factors in lipid lamellar-non-lamellar phase transitions, 

particularly for the Lα↔HII phase transition (Gruner, 1985; Gruner, 1989). The beauty 
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of this phenomenological model is in two respects. First, unlike other interactions, the 

same functional form of the elastic energy (Equation 2-9) is applicable to various 

structural geometries a lipid liquid crystal can assumes, even though additional terms 

may be needed for some complicated phases. Second, the monolayer spontaneous 

curvature neatly quantifies the phase preference. This lipid phase preference is 

reflected in the spontaneous curvatures 0C , with magnitudes of 0C  quantifying lipid 

tendency of adopting a non-lamellar structure and with its sign denoting direction of 

bending (toward water or lipid). Moreover, the spontaneous curvature 0C  and other 

elastic constants, such as the bending modulus K, are conceptually akin to coarse-

graining, by which details of intermolecular interactions are contained in simple 

properties without the need of understanding these details when discussion their 

effects. Indeed, in our discussion in Section 2.2.5 we have seen that part of the free 

energy contribution from electrostatic interactions is factored into 0C  and K. Our 

other earlier discussions also presented the viewpoint from literature that regards van 

der Waals force and hydration interactions as having been reflected on the elastic 

energy. Even effects of environmental conditions such as temperature will be 

described in the context of the spontaneous curvature and bending modulus in our later 

discussions. This deliberation further justifies our neglect of some interactions. 

 

2.3.2 Mechanisms of the Phase Transitions 

 

When the monolayer spontaneous curvature 0C  of a lipid is large, no single structural 

geometry can minimize both the elastic energy and hydrocarbon chain packing stress 

simultaneously. As a result, frustration exists between these two energy needs: one 

either satisfies the elastic energy requirement and forms a non-lamellar structure with 

hydrocarbon chains stretching differentially or minimizes the packing strain but ends 
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up with a higher elastic energy penalty. This situation was deeply discussed in 

Anderson et. al. (1988). In this study, the authors first calculated the mean curvature 

on the lipid-water interface of a mPn
_
3 structure with the assumption of constant 

hydrocarbon chain length throughout the entire unit cell. Then, they calculated the 

hydrocarbon chain lengths by assuming that the mean curvature was uniform over the 

unit cell. Their calculations demonstrated that when one of the two parameters, 

hydrocarbon chain length and mean curvature, was held constant, the other 

consistently exhibited a spatial variation. In other words, the two energy requirements 

were never met concomitantly. However, it was also found that compared to the Lα 

and HII phases this frustration was smaller when lipids were arranged in a QII phase. 

This result laid a theoretical foundation for explaining the phase sequence, 

Lα↔QII↔HII, observed in many experiments (e.g., So et. al., 1993; Gruner et. al., 

1988; Shyamsunder et. al., 1988). 

Questions relating to this phase transition sequence are how lipids transform 

between each phase and why some lipids exhibit this sequence while others simply 

display a facile transition of Lα↔HII without a QII phase observed. These questions 

consistently invite research attention because solving these puzzles may shed light on 

the fusion mechanisms of biomembranes (Milhaud, 2004). Many models have been 

proposed to describe these fusion mechanisms. According to Siegel (1993), these 

proposed models can be classified into two categories: one involving an inter-bilayer 

intermediate structure, "stalk", which connects the monolayers of two apposing 

bilayers and has a radius comparable to the lipid molecular dimension (Figure 2.3.1a; 

Markin et. al., 1984), and the other with the inverted micellar intermediate (IMI) as an 

intermediate structure in fusion (Figure 2.3.1b; Siegel, 1986a,b). Using the energetics 

model presented in Section 2.3.1, Siegel (1993) calculated free energies of these two 
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fusion intermediates relative to the Lα phase, and concluded that the stalk model was 

more energetically favorable than the IMI model. This conclusion was later confirmed 

by experiments (Siegel et. al, 1994; Yang and Huang, 2002). Subsequent 

modifications further strengthened validity of the stalk model and established a more 

complete series of intermediates in lamellar-non-lamellar phase transitions (Siegel and 

Epand, 1997; Siegel, 1999; Kozlovsky and Kozlov, 2002; Siegel and Kozlov, 2004; 

Siegel, 2008). Figure 2.3.2 shows results of these theoretical works and illustrates 

potential mechanisms of the Lα-HII and Lα-QII phase transitions. Nevertheless, to our 

best knowledge, there is still no model proposed for mechanisms of the QII-HII phase 

transition. 
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(a)                                                                      (b) 

Figure 2.3.1. Schematic representations of the stalk (a) and inverted micellar 

intermediate (IMI) (b) structures. (The figure is adapted from Siegel (1993) and Siegel 

(1999)). 
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Figure 2.3.2. Mechanisms of lamellar-non-lamellar phase transitions based on the 

modified stalk model. Precursor of the non-lamellar phases is a structure called trans-

monolayer contact (TMC), which evolves from the stalk structure. This structure may 

rupture to form an inter-lamellar attachment (ILA) structure. Accumulation of ILA 

leads to formation of a QII phase. On the other hand, numerous TMCs can assemble 

into precursors of the HII phase, which later transform to the phase. (The figure is 

adapted from Siegel (1997). 
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CHAPTER 3 

EXPERIMENTAL 

3.1 Introduction 

 

This chapter will present the experimental setups and procedures with which this 

thesis study has been carried out. A brief introduction to the X-ray diffraction theory, 

based on the standard textbooks (e.g., Als-Nielsen and McMorrow, 2001; Kasai and 

Kakudo, 2005; Warren, 1969; Drenth, 2007) is also included.  

 

3.2 X-ray Scattering Technique 

3.2.1 X-ray Diffraction Theory 

 

X-ray scattering is one of the most widely used experimental methods in the 

structural studies of biomolecules. The technique provides abundant structural 

information, from the overall shape of a biomolecule to precise positions of each atom 

within a biomolecule. In some rare cases, with adoption of special experimental 

techniques, X-ray scattering can even reveal dynamical properties of a biomolecule 

(e.g., Rasmussen et. al., 1992; Österberg et. al., 1994; Pollack et. al., 2001; Ihee et. al., 

2005). 

X-rays mainly interact with the electrons of an atom and effectively map out the 

electron number densities within a molecule, from which the position of each atom 

can be derived and thus the structure of the molecule can be determined. Classically, 

the interactions among X-rays and the electrons are understood in the context of a free 

electron perturbed by the electrical field of an incident electromagnetic wave. As 
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illustrated in Figure 3.2.1, the incident X-rays polarized and traveling along x and z 

directions, respectively, with the electric field Ein,  

zik
xin eEE 0

0= , (3-1) 

 

where Ex0 is the amplitude at peak and k0 is the wavenumber, induces oscillation of a 

free electron and consequently radiation of spherical electromagnetic waves by the  

 

 

Figure 3.2.1. Classical description of the interaction between incident X-rays (wavy 

line) and a free electron (red sphere). The incident X-rays, with amplitude Ex0 and 

wavevector 0K
r

, are polarized and travel along x and z directions, respectively. The 

irradiated free electron emits electromagnetic waves with amplitude Ex0/R, where R is 

the distance from the electron to the observation point, and wavevector rK
r

 represented 

by blue spheres. 
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electron. In the case of Thomson scattering, the interaction among X-rays and 

electrons are free of energy loss and the electric field of the radiated spherical wave 

Ee,rad, when observed in a distance R from the electron, can be expressed as, 

 

R
eEE

Rik

xrade

r

0, ∝ , (3-2) 

 

where kr = k0 is the wavenumber of the radiated wave.  

When observed in the limit of R much greater than the electron separations, the 

radiation from a group of electrons is essentially parallel and identical in wavelength, 

displaying characteristics of coherence. As the electrons are clustered around nuclei, 

coherence allows the radiated spherical waves from different atomic electrons to 

interfere with each other (Figure 3.2.2), reminiscent of the classic double-slit 

experiment. While many of the spherical wavefronts cancel out with each other due to 

destructive interference, the amplitude of the composite wave is multiplied in a certain 

propagation direction where constructive interferences occur. As a result, the atom 

effectively deflects the incident X-rays from their original direction to the one 

specified by the momentum transfer vector Q
r

, 

 

0kkQ r

rrr
−= , (3-3) 

and 

θλπ sin)/4(=Q
r

, (3-4) 

 

where λ is the incident and radiated wavelength, and 2θ is the scattering angle (Figure 

3.2.3). The electrical field of the composite waves radiated from the atoms Eatom can 

subsequently be expressed as, 
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Figure 3.2.2. Interference of spherical waves radiated by two atoms in a close 

proximity. The straight lines denote peaks of the electromagnetic waves. Constructive 

interference occurs where peaks from the two waves meet (blue arrow) while 

coincidence of troughs results in destructive interferences (green arrow). 
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where )'(rrρ  is the electron number density at 'rr  with the nucleus at the origin and f0 

(Q
r

) is the atomic form factor with the value of f0 ( 0=Q
r

) identical to the atomic 

number of the atom concerned; the exponential term factors in the phase differences of 

waves arising from the positional shifts of the electrons relative to the origin, i.e., the  
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Figure 3.2.3. Geometry of scattering by two objects with separation rr . From the 

geometry, the difference in traveling path (i.e. the difference in the phase of a wave) 

between the two scattering events, denoted by green lines, can be expressed as 

rQkkrrkrk rr
rrrrrrrr
⋅=−⋅=⋅+⋅− )( 00 , where Q

r
 is the momentum transfer factor (see 

the text). The angle between the incident and scattered waves is 2θ, which, according 

to the Bragg's law, has the relation of θλ sin2d= , where λ is the incident wavelength 

and d is the separation between two neighboring repeat units (see below) 

 

nucleus (Figure 3.2.3). Note that the atomic form factor f0 (Q
r

) is actually the Fourier 

transform of the electron density ρ ( rr ). This important recognition will be further 

developed below. 

In the real world where atomic electrons are bound, additional terms, f’(ħω) and 

if’’ (ħω) where ħω is the incident photon energy, should be included to correct the 

scattering power and phase difference when the photon energy is comparable to the 

binding energies of the electrons (i.e., an adsorption edge of an atom). X-ray scattering 
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in this condition is called the anomalous scattering and is widely used in 

macromolecule crystallography to solve the phase problem (see below). Since the 

photon energies considered in this thesis study are significantly greater than the 

adsorption edges of the common elements, C, H and O, seen in lipids, anomalous 

dispersion is neglected and details of the anomalous scattering will not be further 

discussed here. The reader is encouraged to consult Drenth (2007), Blow (2002) and 

Als-Nielson and McMorrow (2001) for in-depth discussions of the topic.  

As atoms assemble into a molecule, the total X-ray scattering is 
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where )(0 Qf j

r
 and jrr  are the atomic form factor and the relative position of the j’th 

atom within the molecule, respectively. Again, the exponential term denotes the phase 

difference contributed by the positional shift relative to the origin, which is set 

arbitrarily within the molecule, and )(QF mol
r

 is a Fourier series. Alternatively, if the 

electron density )'(rrρ  is treated as being continuous within a molecule, the total 

scattering from a molecule can be described as, 

 

)()exp()( ,, QFEdVrQirEE mol
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rrrr
=⋅∝ ∫ ρ , (3-7) 

 

where rr  is the position vector within the molecular volume V and )(QF mol
r

 is the 

Fourier transform of )(rrρ . )(QF mol
r

 is also known as the structure factor due to its 

strong relationship with the spatial arrangement of atoms within a molecule.  
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Although the possibility of determining molecular structures with X-ray scattering 

from single or a small number of molecules is being intensively explored due to 

introduction of the next generation photon sources such as X-ray free electron lasers 

(XFEL) and Energy Recovery Linacs (ERL), crystals are still needed to obtain atomic 

structures. For a crystal, the X-ray scattering power of each unit cell is added up into 

the total X-ray scattering of a crystal Ecrystal, 
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rr
)exp( , 

(3-8) 

 

where nR
r

 is the lattice vector denoting the position of a unit cell within a crystal and 

the exponential term is the phase factor. It is noticed that due to the large number of 

unit cells present in a crystal nRQ
rr

⋅  must be an integer multiple of 2π for the 

conditions of constructive interference being met so that the scattered X-rays from a 

crystal are concentrated and can be observed experimentally. Explicitly, when nR
r

 is 

expressed as, 

 

332211 anananRn
rrrr

++= , (3-9) 

 

where 1ar , 2ar  and 3ar are the lattice vectors, and n1, n2 and n3 are integers, the 

constructive interference conditions is 

 

)(2)()()( 321332211 nlknhnQanQanQanRQ n ++=⋅+⋅+⋅=⋅ π
rrrrrrrr

, (3-10) 

 

where h, k and l are integers, and Q
r

 specifies the scattering angle. This condition is 

known as the Laue condition, which is equivalent to the famous Bragg’s law. When 
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Figure 3.2.4. X-ray diffraction image of a protein RNase A single crystal. The inset 

enlarges two Bragg spots, along with the profile of one of the spots. The profile shows 

the finite size of the peak (see the text). The shadow arose from a beam stop and the 

dark diffuse ring came from the oil used to prevent dehydration of the crystal. 

 

the Laue condition is fulfilled, sharp peaks, often called Bragg spots in 

crystallography, are experimentally observed (Figure 3.2.4) and can be denoted with 

the Miller indices (h, k, l) in a 3-D lattice or (h, k) in a 2-D lattice.  



66 

Theoretically, the diffraction peaks are observable only when the Laue condition is 

exactly satisfied. However, the incident X-rays are not perfectly collimated and 

monochromatic. A real, macroscopic crystal is not free of defects, as well. 

Consequently, the experimentally measurable diffraction peaks are not in the shape of 

a delta function but are of finite sizes (inset in Figure 3.2.4). Taking these real world 

constraints into consideration, the Lorentz and polarization factors are introduced and 

the integrated intensity of the finite size peak realcrystalI ,  is related to the theoretical 

intensity idealcrystalI ,  through, 

 

idealcrystalrealcrystal II ,

2

, 2
)2(cos1

)2sin(
1
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⎝

⎛ +
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⎝

⎛
∝

θ
θ

, (3-11) 

with 
222

, )(QFEEI mol
molcrystalidealcrystal

r
∝∝∝ , (3-12) 

 

where the first term of Equation 3-11 is the Lorentz factor (the readers are referred to 

Als-Nielsen and McMorrow (2001), and Warren (1969) for the derivation of the 

factor), and the second term of the same equation is the polarization factor, which is 

included for unpolarized incident X-rays. Since in this thesis study diffraction data 

were largely collected in the small scattering angle regime (2θ < 0.1), thus cos2(2θ) ≈ 

1 and the polarization term approaches unity. On the other hand, a similar argument 

emphasizes the importance of considering the Lorentz factor in the small scattering 

angle regime. The Lorentz factor was taken into consideration when the electron 

density map was reconstructed with both the line shape fitting and conventional peak 

integration methods for the cardiolipin liquid crystals studied here (Section 4.3). 

As shown in Equations 3-11 and 3-12, knowledge of the integrated X-ray 

intensities from an X-ray scattering experiment may ultimately lead to the 
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understanding of the structure of the experimental subject. Nevertheless, reversing the 

Fourier transform in Equation 3-7 produces the expression of the electron density 

)(rrρ  as, 

 

∑∑ ⋅−=⋅−∝
Q

mol

Q

mol rQiQiQFrQiQFr
rr

rrrrrrrr ))(exp()()exp()()( φρ , 
(3-13) 

 

which indicates that the structure factor )(QF mol
r

 is dependent on both the amplitude, 

which is proportional to )(QF mol
r

, and the phase, denoted by )(Q
r

φ , of the scattered 

X-rays from a molecule. Apparently, experimental data on integrated intensities can 

only provide information regarding the amplitude of the structure factor )(QF mol
r

 

through Equations 3-11 and 3-12 while its phase )(Q
r

φ  cannot be readily derived from 

an ordinary X-ray diffraction experiment. The difficulty in deducing the phase of the 

scattered X-rays from diffraction data is the notorious phase problem in 

crystallography. As noted above, the phenomenon of X-ray anomalous scattering is 

widely used in solving the phase problem in macromolecule crystallography, methods 

known as Multiple- and Single-Wavelength Anomalous Diffraction (MAD and SAD). 

An introductory survey can be found in Drenth (2007). 

Since cardiolipin molecules in this thesis study were commonly arranged into 

centrosymmetric structures of the lamellar and inversed hexagonal lipid phases (see 

Section 1.3.1), it is worthwhile discussing the phase problem involving 

centrosymmetric systems. Based on Equation 3-13, the Laue condition of Equation 3-

10 and 321 azayaxr rrrr
++= , the electron density )(rrρ  can be further developed into, 
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(3-14) 

 

For )()( rr rr
−= ρρ  i.e. centrosymmetric, the phase of the structure factor )(Q

r
φ  must 

be either π or zero such that )(rrρ  is expressed in terms of centrosymmetric cosine 

functions. As a result, the phase problem in a centrosymmetric system is reduced to 

determining the sign (plus or minus) of the amplitudes of the structure factor 

)(QF mol
r

, simplifying the phase determination process. This characteristic of a 

centrosymmetric system is used in reconstructing the electron density map with the 

peak integration method for the cardiolipin liquid crystal studied here (Section 4.3.3). 

So far, we have focused on molecules in a single, large crystal. However, instead 

of forming such single crystals with long-range periodicity, lipid-water and lipid-

aqueous solution mixtures, in most cases, exhibit only short-range order with local 

domains of repeat units randomly oriented. This is similar to the case of powder 

diffraction in which incident X-rays are scattered by a group of very tiny, unoriented 

crystals. Although most of the arguments described above still hold true, some need to 

be slightly modified for powder diffraction. First, while the Laue condition is still a 

prerequisite for constructive interferences, the scattered X-rays specified by the Q
r

 

fulfilling the Laue condition are not presented as spots in an X-ray detector anymore. 

Instead, the sheer number of local domains within a preparation may effectively 

sample all the possible orientations a crystal can assume, and replaces the Bragg spots 

with diffraction rings (Figure 3.2.5), which may be regarded as being constituted with 

a vast amount of the spots and can still be denoted with Miller indices. Second, since 
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Figure 3.2.5. X-ray diffraction image of a 78.7 wt% cardiolipin-NaCl mixture 

collected at 40 °C, 1.5 kbar. The Bragg spots demonstrated in Figure 3.2.4 give way to 

diffraction rings when randomly oriented domains are presented in a huge amount to 

replace a large single crystal.   

 

the Bragg spots give way to diffraction rings, the observable intensities are now 

integrated over a ring instead of a spot. In this way, all the scattered X-rays with 

identical amplitude of the momentum transfer vector Q
r

, i.e., identical scattering 

angle, 2θ, contribute equally to the integrated intensity of the same diffraction ring. 

Therefore, a multiplicity factor, m, must be introduced to take this phenomenon into 

account. Third, with diffraction rings in place of Bragg spots, the Lorentz factor 

introduced in Equation 3-11 has to be further modified as over thousands tiny crystals 

being present simultaneously. Taken together, Equation 3-11 is rewritten as, 
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where m is the multiplicity factor, the second term is the Lorentz factor for powder 

diffraction (for the derivation, refer to Als-Nielsen and McMorrow (2001), and 

Warren (1969)) and the polarization factor shown in Equation 3-11 is omitted due to 

the small scattering angle (see above). As reasoned in Turner (1990), the diffraction 

intensity integration method applied in thesis study, azimuthal integration over a 

diffraction image recorded on an area detector (Section 3.6), automatically corrects for 

the factor of 1/sinθ and, again in the small scattering regime, reduces Equation 3-15 to, 

 

idealcrystalidealcrystalidealcrystalrealcrystal ImImImI ,,,, 2)2sin( θθθ
∝≈∝ . (3-16) 

 

This equation corresponds to Equation 4-15 of Chapter 4 and will be used for the 

electron density map reconstruction with the peak integration method.  

 

3.2.2 X-ray Apparatus 

 

Setup of a typical X-ray scattering experiment is as illustrated in Figure 3.2.6. X-

rays from a source are monochromatized, focused and collimated with X-ray optics 

before illuminating a sample. The X-rays scattered by the sample are recorded with a 

detector (either 1-D point detector or 2-D area detector) located in a distance of R from 

the sample, while the transmitted X-rays are absorbed with a beam stop to prevent the 

strong direct beam from damaging the detector. The positions of the detector and 

beam stop depend on the specific type of experiment to be carried out. In a small angle  
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Figure 3.2.6. Setup for a typical X-ray scattering experiment. The X-ray beam is 

monochromatized, focused and collimated with X-ray optics before illuminating a 

sample. The scattered X-rays, with the scattering angle 2θ, are recorded with a 2-D 

area detector placed in a distance R from the sample while the transmitted beam is 

blocked by a beam stop. 

 

X-ray scattering (SAXS) experiment, the detector is such placed that the scattered X-

rays with the scattering angle 2θ <0.1 radians can be clearly resolved, with the beam 

stop close to the detector to minimize its shadow on the detector. This type of 

experimental setup entails a long distance between the sample and the detector and, 

along with the remoteness of the beam stop from the sample, is inevitably 

accompanied by strong air scattering, which reduces the signal to noise ratio. To 

counter this, the flight path of the X-ray beam is usually in vacuum or helium gas. 
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In this thesis study, the X-ray sources were the CuKα radiation from a Rigaku RU-

3HR rotating anode generator in our laboratory and the synchrotron radiation of the 

G1 beamline at the Cornell High Energy Synchrotron Source (CHESS). The rotating 

anode generator was operated at 36 kV and a current of 48 mA with a 2mm×0.2mm 

point focus on the rotating copper anode. At the 6° take-off angle used, this resulted in 

a 0.2mm×0.2mm focus. The generated X-rays were monochromatized with a 10 µm-

thick nickel foil (Goodfellow, PA) to filter out CuKβ radiation, leaving CuKα of 

wavelength λ ≈ 1.54 Å, and focused with double Franks mirrors, which also filtered 

out the Bremsstrahlung radiation. The downstream X-rays were then collimated with a 

pair of slits perpendicular to each other (horizontal and vertical). The final size of the 

X-ray beam at the sample was estimated to be <0.5mm×0.5mm and the photon flux be 

in the order of magnitude of 107 photons/sec/mm2. The flight path of the beam 

upstream to the slits were purged with helium gas while that of the downstream beam, 

including through the sample, was under vacuum. The beam stop was placed at the 

end of a pipe with a fixed length, which holds vacuum for the flight path (Figure 

3.2.7). An air gap of <1 cm was left between the beam stop and the detector since the 

pipe was not attached to the detector for the ease of switching pipes to adjust the 

sample-to-detector distance. The detector used for the rotating anode source was a 

home-built 2-D area charge-coupled device (CCD) detector with 1024×1024 pixels 

and an active input area of 51×51mm2 (similar to the one reported in Tate et. al. 1995).  

For the CHESS G1 beamline, X-rays were radiated from 5.3 GeV positrons 

winding through a 49-pole wiggler. In this thesis study, the photon energy of the X-ray 

beam was set to 10.6 or 9.9 keV (equivalent to the wavelength of 1.17 or 1.25 Å). The 

layout of the beam conditioning for the G1 beamline is shown in Figure 3.2.8. The X-

ray beam from the wiggler was pre-filtered with a 0.5 mm-thick graphite filter and 
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Figure 3.2.7. Setup of the rotation anode X-ray generator beamline. Samples sit inside 

the vacuum-proof sample box. An air gap (red arrow) exists between the end of the 

vacuum pipe and the detector. A beam stop is placed on the inner side of the pipe end.  

 

passed through the white-beam mirror made of a rhodium-coated Glidcop substrate to 

reduce the heat load of the following X-ray optics and to collimate the beam before 

being monochromatized with multilayers and further focused with a rhodium-coated 

Si single crystal mirror. The monochromatized X-ray beam had an energy bandwidth 

∆E/E = 1.3% (Kazimirov et. al. 2006). In the G1 hutch, the beam was further 

collimated with a series of slits, with the final beam size set to 0.5mm×0.5mm and the 

photon flux in the order of magnitude of 1013 photons/sec/mm2. Compared to the 

photon flux of 107 photons/sec/mm2 from the rotating anode source, the high photon 

flux of the synchrotron source significantly reduced the required X-ray exposure time 

(see below) while still considerably improving the signal-to-noise ratio. Similar to the   
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Figure 3.2.8. X-ray optics layout of the G1 beamline at CHESS. X-rays are radiated 

from positrons winding through the wiggler. See the text for the function of each 

optics element. 

 

 

Figure 3.2.9. Setup of the G1 beamline at CHESS. Unlike the setup with the rotating 

anode, the vacuum pipe and the sample box are within different vacuum circuits.   
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setup with the rotation anode source, the flight path of the X-ray was purged with 

helium gas upstream to the sample and placed under vacuum afterwards, with a beam 

stop at the end of a pipe (Figure 3.2.9). The detector employed for the G1 beamline 

was a home-built 2-D "Flicam" CCD detector with 1024×1024 pixels and an active 

area 71.45×71.45 mm2, again similar to that of Tate et. al. (1995). 

 

3.2.3 Small and Wide Angle Scattering from Lipid Liquid Crystals 

 

In this thesis study, the main X-ray scattering data were collected in the small 

scattering angle regime with those taken in the wide scattering angle regime serving to 

verify the lipid phase assignment to a given cardiolipin sample (see below). A typical 

SAXS experiment concerns X-ray scattering with scattering angles 2θ < 0.1 radians 

and, correspondingly with λ = 1.54Å, the momentum transfer vector amplitude |Q| 

within 4 nm-1 (Equation 3-4). In these 2θ and |Q| ranges, people study structural 

orders in a length scale of 2-150 nm. On the other hand, one resorts to the wide angle 

X-ray scattering (WAXS) to examine orderings in the length scale of <50 Å. This 

entails an experimental setup focusing on the |Q| > 0.13 Å-1 and 2θ > 0.03 radians. 

For the cardiolipin samples studied here, the SAXS data offered information of the 

distance between two neighboring repeat units, d, of a given lipid phase (see also the 

caption of the Figure 3.2.3). In the lamellar phases, this distance, conventionally called 

the d-spacing, comprises the bilayer thickness and width of an inter-bilayer water 

volume, while in the HII phase d can be regarded as the separation between two closest 

centers of water cores (Figure 3.2.10). Typical X-ray scattering profiles, in the form of 

scattering intensity versus the momentum transfer vector amplitude |Q|, of lipid liquid 

crystals in the lamellar and the HII phases are shown in Figure 3.2.11. The diffraction  
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  (a)                                                                             (b) 

Figure 3.2.10. Illustration of the repeat distances d for the lipid liquid crystalline 

lamellar (a) and HII (b) phases. 

 

peaks of the lamellar phases are spaced with their |Q| in the ratio of 1:2:3:4:... while 

those of the HII phase are in the ratio of :7:2:3:1 ... The peaks of the former are 

customarily designated as the 1st, 2nd, 3rd,... order peaks of the lamellar phases and 

those of the latter are denoted with the Millar indices (Section 3.2.1) of (1,0), (1,1), 

(2,0), (2,1)... Based on these characteristics of how the diffraction peaks are spaced, 

one can determine whether a lipid aggregate is arranged in the lamellar phases or in 

the HII phase. With the relation of d = 2π/|Q|, one can even derive the repeat distances 

d from |Q| of the 1st order peak of the lamellar phases or of the (1,0) peak of the HII 

phase, although values converted from the latter have to be further multiplied by the 

factor of 32  to yield correct values.  

Although discontinuity in the d-spacing value (e. g. Figure 3.2.12) can often be 

conveniently employed to distinguish the Lα phase from a gel phase, which, in our 

cardiolipin system, consistently displayed a d-spacing of ~58 Å regardless of 

temperature and lipid composition (Section 4.3.1), lipid phase determination among 
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Figure 3.2.11. Typical small angle X-ray scattering profiles of the lipid liquid 

crystalline Lα phase (a) and HII phase (b), collected from 32.9 wt% cardiolipin-water 

and 80.2 wt% cardiolipin-CaCl2 mixtures at 20 °C, respectively. Refer to Section 3.3 

for the nomenclature of samples. Dashed lines are the expected positions of the peaks. 
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Figure 3.2.12. d-spacings of the lamellar phases as a function of temperature for a 

59.8 wt% cardiolipin-water mixture. Discontinuity in the d-spacing is indicative of a 

phase transition. 

 

the lamellar phases cannot simply rely on how the diffraction peaks are spaced and has 

to be carried out in a more reliable and determinate way. As discussed in Section 

1.3.1, the rigid hydrocarbon chains of a gel phase are arranged in a short range, lattice-

like order, in a length scale of ~4.3 Å (or ~1.46 Å-1 in |Q|) for cardiolipin (Lewis et. 

al., 2007). This feature of a gel phase is readily observable as a sharp scattering peak 

in the wide-angle scattering regime (Figure 3.2.13) and can be applied to assigning 

cardiolipin phases. In addition to the feature resolved with WAXS, the relative X-ray 

scattering intensities among the diffraction peaks are also of use in assigning the gel 

Lβ phase as this phase typically exhibits a strong 1st order peak, a moderate 4th order 

peak, and a weak 3rd order peak (Figure 3.2.14; Gruner et. al., 1988). The WAXS data 
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may further distinguish the gel Lβ' phase (see Section 1.3.1) from the gel Lβ phase. 

Unlike the Lβ phase, the tilted hydrocarbon chains relative to the bilayer surface 

normal render the Lβ' phase two, rather one, sharp peaks in the WAXS regime of |Q| 

from 1.3-1.8 Å-1 (Tardieu et. al., 1973). The two peaks are centered ~1.37 Å-1 and 

~1.65 Å-1 for cardiolipin (Lewis et. al., 2007). Guided by the WAXS data, we could 

unambiguously distinguish the Lα phase from a gel phase and confirmed the reliability 

of determining lipid phases with the variation in the d-spacing. Nevertheless, the 

resolution of our WAXS data was not always high enough to assure a correct lipid 

phase assignment among the various gel phases. Therefore, we did not further 

differentiate the gel phases and collectively labeled structures with sharp diffraction 

peaks in the WAXS regime as the "gel" phase.  
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Figure 3.2.13. Typical X-ray scattering images (a) and profiles (b) in the WAXS 

regime. The data compare X-ray scattering from the Lα and a gel phases, and were 

collected from a 66.1 wt% cardiolipin-water mixture at 5 °C and -16 °C, respectively. 

The gel phase displays a sharp peak at ~1.4 Å-1, which was scattered by its orderly 

structured hydrocarbon chains (green arrows) whereas only a diffuse scattering peak is 

observed for the flexible hydrocarbon chains of the Lα phase (red arrows). Numbers 

index the peaks. Black arrows denote noise because the peaks are not observed in the 

2-D diffraction images. Their shapes changed irregularly with the sample temperature. 
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Figure 3.2.14. Small angle X-ray scattering profile of the lipid liquid crystalline Lβ 

phase, collected from a 80.2 wt% cardiolipin-CaCl2 mixture at -20 °C. Inset enlarges 

the marked region. Dashed lines are the expected peak positions.  

 

3.3 Cardiolipin Lipid Liquid Crystal Sample Preparation 

 

Tetraoleoyl-cardiolipin (C18:1), with the double bond at the C-9 position, was the 

cardiolipin spices chosen for this thesis study. We chose tetraoleoyl-cardiolipin as our 

experimental subject, which shares the same hydrocarbon chain as 

dioleoylphosphatidylethanolamine (DOPE). Moreover, it was found that the 

proportion of tetraoleoyl-cardiolipin with respect to the total cardiolipin species inside 

the deep-sea bacterium photobacterium profundum increased when the bacterium was 

cultured at ever elevating pressures (Bartlett, 2002). Studying the phase behavior of 
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this cardiolipin species, especially at high pressures, may shed light on how 

piezophilic organisms adapt to high-pressure environments. Tetraoleoyl-cardiolipin is 

also a dominating cardiolipin species in human lymphoblasts and yeasts (Schlame et. 

al., 2005).  

Tetraoleoyl-cardiolipin sodium salt dissolved in chloroform at a concentration of 

25 mg/ml (Cat. no. 710335C) was purchased from Avanti (Alabaster, Alabama) and 

used without further purification. The cardiolipin chloroform solution was stored at     

-90 °C before sample preparation. The sample preparation process involves two major 

steps: lyophilizing the cardiolipin salt and mixing the resultant powder with water or 

salt solutions. When lyophilizing the cardiolipin salt, 160-200 µl stock solution, 

containing 4-5 mg the cardiolipin salt, was placed in a glass cone-bottomed centrifuge 

tube pre-rinsed with ACS-grade chloroform (Cat. no. 4440-04, Mallinckrodt 

Chemicals, Phillipsburg, NJ). Chloroform in the lipid solution was evaporated under 

Ar gas, followed by an overnight incubation under vacuum (<50 mbar). The resultant 

chloroform-free cardiolipin film was dissolved in 50-60 µl ACS-grade cyclohexane 

(Cat. no. 9206-22, Mallinckrodt Chemicals, Phillipsburg, NJ) and then transferred to 

an X-ray glass capillary with O.D. 0.9 mm (Cat. no. 09-SG, Charles Supper, Natick, 

MA), which was cleaned with the mixture of hydrochloric and nitric acids in advance 

to remove contaminants. After freezing at -90 °C for at least 30 minutes, the 

cardiolipin cyclohexane solution was freeze-dried in an ice-water bath while under 

vacuum (~70 mbar). The resultant cardiolipin powder was left under vacuum for over 

1.5 hours to evaporate residual cyclohexane. Ambient pressure was restored to the 

cardiolipin powder by filling in Ar gas after the powder had been warmed to room 

temperature under vacuum for additional 30 minutes. The cardiolipin powder was 
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either used immediately for the next step of mixing or stored in an Ar gas-filled tube at 

-90 °C before further use. 

To prepare a cardiolipin-water and cardiolipin-salt solution mixture, one of the 

following solutions was mixed with the cardiolipin powder accordingly: 1mM EDTA, 

5 mM HEPES in pH = 6.76; 1mM EDTA, 3M NaCl, 5mM HEPES, in pH = 6.35; 1M 

CaCl2, 5mM HEPES in pH = 6.94; 1mM EDTA, 0.5 M LaCl3, 5mM HEPES in pH = 

6.51. The concentrations of the salts were such chosen that the ionic strength of each 

of the salt solutions was identical. Except for the calcium salt solution, EDTA was 

added to sequester residual calcium ions in the other solutions. The mixtures of the 

cardiolipin powder with the above solutions were designated as “cardiolipin-water”, 

“cardiolipin-NaCl”, “cardiolipin-CaCl2” and “cardiolipin-LaCl3” mixtures, 

respectively (or collectively called cardiolipin-salt solution mixtures for the latter 

three), and concentrations (in wt%) prefixing the designations referred to the 

cardiolipin fraction of the total contents. In preparing the mixtures with a needed lipid 

concentration, a given amount of the cardiolipin powder, measured with an electro-

balance (Model no. C-29, Cahn Instruments, Cerritos, CA) with a precision down to 1 

µg, was mixed with a certain amount of water or salt solution. The glass capillary 

containing the mixture was then flame-sealed immediately after purging with Ar gas 

to prevent lipid degradation (see the next section), and the final lipid concentration 

(named “nominal concentration” here; see Section 3.6) was determined by comparing 

the weight of the capillary before and after adding water or salt solutions (weight of an 

empty capillary had been measured in advance). The mixture was subsequently 

centrifuged alternately against both ends of the capillary for 15-20 times such that the 

mixture could flow back and forth within the capillary to be homogenized. After 

centrifugation, the mixture was subjected to ten freeze-thaw cycles between -90 °C 
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and room temperature by alternately placing the mixture in and out of a deep-freezer 

to further improve homogeneity. For cardiolipin-salt solution mixtures, an additional 

homogenizing process was employed. This process entailed a scheme named 

"spinning-while-thawing", in which the same centrifugation procedure used above was 

performed again but only when the sample was freshly retrieved and thawed from -90 

°C. Two such spinning-while-thawing processes were carried out for a cardiolipin-salt 

solution mixture with an intervening overnight incubation at 4 °C. For cardiolipin-

water mixtures, the well-mixed samples were then used immediately for X-ray 

scattering experiments while the cardiolipin-salt solution mixtures were usually stored 

at 4 °C for another 5-8 days to further improve homogenization. A scheme for 

examining sample homogenization was performed before a data collection and will be 

described in the Section 3.5. Immediately before being used in an X-ray scattering 

experiment at ambient pressure, the capillary containing the cardiolipin sample were 

shortened with flame to < 1". 

In addition to the regular cardiolipin-water mixtures, cardiolipin-water mixtures 

containing dodecane were also prepared. In preparing the samples,  spectro-grade 

dodecane (Cat. no. 13089, Eastman Kodak, Rochester, NY) was pipetted to the 

cardiolipin powder before water. The capillary was weighed with the electro-balance 

after the addition to determine the amount of dodecane added. Fractions of dodecane 

with respect to the total organic contents (i.e. dodecane plus cardiolipin) were 

controlled to 5-10 wt%. The same sample preparation steps described above were 

followed after this point. It was not particularly difficult to homogenize water with the 

mixture of cardiolipin and dodecane. Again, the concentration prefixing a sample 

designation still referred to cardiolipin fraction with respect to the total content of the 

whole mixture.  
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3.4 Thin-Layer Chromatography of the Cardiolipin Samples 

 

To examine the integrity of the cardiolipin molecules, thin-layer chromatography 

(TLC) was carried out for the cardiolipin samples after each step of the sample 

preparation and an X-ray scattering data collection. Depending on the sample 

preparation stage at which a cardiolipin sample was retrieved, different procedures 

were followed in performing the chromatography. The first step was invariantly to 

dissolve a cardiolipin sample back into chloroform, and the resultant solution could be 

directly used for the next step if the sample preparation stage was prior to mixing with 

water or salt solutions. However, if a sample had been mixed with water or salt 

solutions inside a glass capillary, more steps had to be carried out before proceeding to 

the next step. In this case, the capillary was cut to preserve only the sample-loaded 

portion and then placed into chloroform. Vigorous vortexing was followed to dissolve 

the cardiolipin-water or -salt solution mixtures and to retrieve them from within the 

capillary. The chloroform solution was then purged with Ar gas to evaporate most of 

the chloroform before incubated under vacuum (<50 mbar) for ~20 minutes to remove 

the remaining chloroform and water or salt solutions. Note that the purging step 

cannot be bypassed since placing the chloroform solution directly under vacuum 

would result in sudden boiling and loss of sample. The liquid-free cardiolipin sample 

could now be dissolved in chloroform again and used for the next step. 

Three aliquots in 1-3 µl of the cardiolipin chloroform solution were dropped onto a 

silica gel 60 TLC plate along a line 25 mm from one end. The chloroform was 

evaporated in a fume hood before the plate was placed into an enclosed glass bottle 

containing a solvent mixture of chloroform, methanol and water in the ratio of 

65:25:4. The amount of the solvent mixture was sufficient to cover the bottom 5 mm 
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of a TLC plate. The solvent mixture was allowed to carry and spread the cardiolipin 

sample across the plate for twenty minutes. After drying, molybdenum blue spray 

reagent (Cat. no. M1942, Sigma-Aldrich, St. Louis, MO) was sprayed onto the plate to 

spot the migrating cardiolipin sample.  

The TLC results for cardiolipin samples at different sample preparation stages 

were shown in Figure 3.4.1. It was found that cardiolipin molecules remained intact 

until they were mixed with water. Upon that sample preparation stage, an additional 

spots, indicating the presence of degraded cardiolipin molecules (presumably with one 

or more of the double bonds oxidized), emerged even before a data collection was 

taken (Figure 3.4.1b). Lipid degradation could further develop to generate five spots 

after leaving a 55 wt% cardiolipin-water mixture at room temperature for two weeks 

(Figure 3.4.1c). Fortunately, the lipid degradation arising from water addition did not 

appreciably increase after a rapidly applied data collection at different temperatures up 

to 40 °C (Figure 3.4.1d; see the next section for the data collection scheme applied in 

this thesis study). This "free of further degradation" observation was still valid even 

after a data collection was performed up to 60 °C (Figure 3.4.1e). Even though TLC 

was not carried out for a cardiolipin sample after a data collection to higher 

temperatures, reversibility of the thermal phase behavior indicated that 60 °C might be 

the highest temperatures without inducing thermal lipid degradation in the time scale 

sufficient for a complete data collection (see below). 

Since lipid degradation appeared to be inevitable for a cardiolipin-water mixture, 

we thus established two criteria to determine the reliability of a data set. For a data set 

to be accepted, the sample must both demonstrate reversible phase behavior, reflected 

in X-ray scattering patterns, through at least two temperature scans (either heating or 

heating and cooling), since irreversibility was indicative of lipid degradation, and TLC 
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result for the sample must display no additional spots to the two which had already 

been present after water addition. Previous experience indicated that phase behavior of 

a cardiolipin sample became irreversible following two temperature scans up to 90 °C 

while reversibility was still preserved after multiple temperature scans were conducted 

through 60 °C (e.g., Figure 3.4.2). We therefore limited our temperature scan to this 

temperature to avoid further lipid degradation. In addition, we also estimated the 

extent of degradation by comparing the TLC results of a given cardiolipin sample 

before and after dilution (Figure 3.4.1e). If darkness of the secondary TLC spots, 

representative of the degraded cardiolipin molecules, of a given sample were 

comparable to or weaker than that of the primary spots after the sample was, say, 

twenty times diluted, the degraded molecules were said to be in the fraction of ~5 

mol%. The cardiolipin samples prepared in this thesis study were estimated to have <2 

mol% degraded cardiolipin molecules. 
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Figure 3.4.1. Thin-layer chromatography results from the cardiolipin samples in 

different sample preparation stages: (a) the cardiolipin sample retrieved after an 

overnight incubation under vacuum (<50 mbar); (b) the cardiolipin sample retrieved 

after water addition and the homogenization process; (c) the cardiolipin sample after 

the standard preparation process, a data collection and 2-week storage at ambient 

condition; (d) the cardiolipin sample after the standard preparation process and a data 

collection up to 40 °C; (e) after the standard preparation process and a data collection. 

Note that various cardiolipin samples were used to produce these results. Lanes of 

each plate were deposited with different amounts of the cardiolipin solutions (1 or 1.5, 

2 and 3 µl; distinguishable from the size of a spot). Note that the lane showing only 

one visible spot in (e) was deposited with the same solution as used in the other lanes 

but with one hundred times dilution. The drop sizes deposited on the lanes were 3, 3 

and 1 µl from left to right. 
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Figure 3.4.2. Repeat distance of the lamellar and the HII phases as a function of 

temperature for an 80.6 wt% cardiolipin-water mixture. Phase behavior and the repeat 

distances were found to be reversible even after multiple temperature scans through  

60 °C. 

 

3.5 X-ray Scattering Data Collection 

 

In an X-ray scattering experiment conducted at ambient pressure, a cardiolipin 

sample-loaded capillary was placed in a copper sample holder shown in Figure 3.5.1 

during a data collection with the rotating anode X-ray beamline. The sample holder 

was located inside the vacuum sample box shown in Figure 3.2.7. Behind the sample 

holder were two Peltier coolers in series (Model. no. 9500/071/085B, Ferrotec, Santa 

Clara, CA) which were powered by a temperature controller (MTCA series, Melcor,  
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Figure 3.5.1. Interior of the sample box shown in Figure 3.2.7 for the rotating anode 

X-ray beamline. The sample box is vacuum when a data collection is underway. The 

sample holder is removable and can be replaced with the Be cell holder shown in 

Figure 3.5.2 to carry out a high pressure X-ray scattering experiment.  
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Trenton, NJ) connected to a personal computer, and cooled by a home-made heat 

exchanger circulated with water at 15 °C. An RTD temperature sensor (Part no. RTD-

830, Omega Engineering, Stamford, CT) was attached to the sample holder and also 

connected to the temperature controller mentioned above. The same sample holder 

was also used for a data collection in the G1 beamline at CHESS though a new sample 

box needed to be built to house the sample holder (Figures 3.2.9 and 3.5.2). Design of 

the new sample box is depicted in Figures 3.5.3 to 3.5.7 and is similar to that of the 

original sample box in layout and function of the components and the ability to hold 

vacuum: a Peltier cooler with its power supplied by the same temperature controller 

and its heat dissipated by another home-made heat exchanger; all the cables and tubing 

connect to the box interior through vacuum-proof adapters. This new sample box is 

also capable of housing high-pressure equipment to carry out a high pressure X-ray 

scattering experiment (Figures 3.5.2 and 3.5.8). See the caption of Figures 3.5.3 to 

3.5.7 for the detailed description of each component. Unlike the original sample box, 

only one Peltier cooler is incorporated into the new box. The temperature range 

achievable with the new box is therefore relatively limited but still covers all the 

temperatures employed here. As mentioned in the caption of Figure 3.2.9, the vacuum 

circuit of the new sample box is independent of that of the vacuum pipe. Two air gaps 

were present on both sides of the sample box to ease the loading of a sample. The 

temperature of the sample holder within both of the boxes was controlled with a 

home-developed program TVX (version 7.2) at the rotating anode beamline and with 

the software package SPEC (Certified Scientific Software, Cambridge, MA) at the G1 

beamline. The two programs were also used to control the data collection.  
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Figure 3.5.2. Sample box used in the G1 beamline. The cover with two X-ray 

transparent kapton windows was lifted to show the interior of the box, which was in 

the setting for high-pressure X-ray scattering experiments. See Figure 3.2.9 for the 

sample box with the cover in place and Figures 3.5.3 to 3.5.7 for the description of 

each component. 
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Figure 3.5.3. Brass-made platform of the sample box shown in Figure 3.5.2. The 

platform is used to house the other components. 

 



96 

 

Figure 3.5.4. Aluminum platform support of the sample box shown in Figure 3.5.2. 

The support holds the platform to the translational stage in the G1 hutch. 
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Figure 3.5.5. Brass-made heat exchanger of the sample box shown in Figure 3.5.2. 

The heat exchanger is circulated with 15 °C water and used to dissipate heat generated 

by the Petlier cooler. 
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Figure 3.5.6. Heat exchanger support of the sample box shown in Figure 3.5.2. The 

support is made of G10 fiberglass laminated epoxy resin and used to stabilize the heat 

exchanger. 
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Figure 3.5.7. Copper intermediary plate of the sample box shown in Figure 3.5.2. The 

plate clamps the Peltier cooler onto the heat exchanger and holds the sample holder 

shown in Figure 3.5.1 in place. 
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(a)                                                                                         (b) 

Figure 3.5.8. (a) Copper Beryllium cell holder as shown in Figure 3.5.2. The holder is 

attached to the intermediary plate shown in Figure 3.5.7 and used to house and 

conduct heat to/from the Beryllium high pressure cell, which can accommodate a 

sample-loaded glass capillary and hold pressure up to 2.4 kbar. Refer to Urayama 

(2001) for the details of the cell. The holder can also be used in the setup with the 

rotating anode beamline. The schematic is not drawn in scale. (b) High pressure tubing 

as shown in Figure 3.5.2. The tubing penetrates the platform shown in Figure 3.5.3 

through a vacuum-proof adapter and connects to the Be cell in the top end and to a 

high-pressure pump at the other end. In an ordinary setup, the top end of this tubing 

may be the actual component clamped by (a). 
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The X-ray apparatus used for the data collections has already been described in 

Section 3.2.2. Vacuum pipes with various lengths were chosen according to the 

needed sample-to-detector distances, which were calibrated with silver behenate 

powder (Blanton et. al., 1995) in advance. Prior to each data collection, homogeneity 

of a cardiolipin sample was examined by measuring |Q| of the first order peak of the 

Lα phase or the (1,0) peak of the HII phase as the X-ray beam was translated along the 

long axis of the capillary at ambient pressure and 20 °C. Diffraction images and the 

relative integrated intensities of peaks in each phase were also compared. Data 

collection would be stopped if diffraction images taken for a sample homogeneity test 

had displayed an observable discrepancy (e.g., Figure 3.5.9) when compared to one 

another. The vast majority of the samples used for the data collections demonstrated 

<0.1 Å variations in d-spacing or in (1,0) peak position, and the relative peak 

intensities were essentially unchanged  (e.g., Figure 3.5.10) when results from 

different parts of a sample were compared. A minor exception was the cardiolipin-

NaCl mixtures, which exhibited ~1 Å variations in average. The larger discrepancy in 

d-spacing might be ascribed to the high NaCl concentration (3 M) employed for these 

samples.  

X-ray scattering data for this thesis study were collected at various sample 

temperatures. Different temperature schemes were followed, depending on the 

anticipated phase transition temperatures for a given condition. In general, a 

cardiolipin sample was first cooled from 20 °C where a homogeneity test was carried 

out to a lower temperature, usually subzero ones, with the rate of 2 °Cmin-1. At each 

temperature point, a sample was allowed to equilibrate for 15 minutes (or 20 minutes 

for samples within a Be cell, due to reduced thermal conduction efficacy) before 

exposed to X-rays. Temperature was changed with the rate of 2 °Cmin-1 and 
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Figure 3.5.9. Example of a sample with poor homogeneity. The homogeneity test was 

carried out for a 40 wt% cardiolipin-water mixture, with the X-ray images taken at two 

separate parts of the sample. The two images display outstanding differences in 

positions and quantity of the resolvable peaks. Numbers index the peaks. 
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Figure 3.5.10. Example of a sample with acceptable homogeneity. The homogeneity 

test result of an 81.3 wt% cardiolipin-water mixture shows repeat distances of the Lα 

phase (a) and integrated intensities of the higher order peaks relative to that of the first 

order peak (b) at different sample positions. X-rays were illuminated on positions 

equally spaced across the sample along the capillary axis. 
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temperature points were 5 °C apart (in some cases, such as shown in Figure 3.5.2, the 

interval was down to 1 °C to confirm the observation of the phase separation 

phenomenon discussed in Section 4.4). In this thesis study, we limited upper and 

lower bounds of temperatures to 60 °C and -20 °C, respectively. Total X-ray exposure 

times were set to either 100 seconds (adopted for the homogeneity tests), 300 seconds 

or 600 seconds with the rotating anode beamline and 0.8 seconds with the G1 

beamline. For each temperature point, two X-ray images were taken consecutively to 

split the aforementioned total exposure time evenly for the zinger removal purpose 

(see the next section).  

In addition to the regular data, dark images with the X-ray shutter closed were 

collected for each data set to record the thermally- and defect-induced dark currents of 

the CCD detectors for the data processing purpose (see the next section). Background 

noise arising from air scatter (which was very week, due to the vacuum condition), the 

glass capillaries and kapton windows were also recorded by exposing empty 

capillaries to X-rays for the electron density map reconstruction with the line-shape 

fitting method (Section 4.3.2). For the same purpose, the shapes of X-ray beam were 

registered by recording the attenuated X-rays without a beam stop and a sample. The 

same exposure times were applied to these subsidiary data collections. 

 

3.6 X-ray Scattering Data Processing and Analysis 

 

Image correction procedures were carried out for raw X-ray scattering data. A 

more detailed description of the process can be found in Barna et. al. (1999). An 

ordinary X-ray scattering image, in addition to wanted signals originating from 

samples, also includes bright, spatially confined, random signals from cosmic rays, 
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decaying radioactive isotopes in the environment or other sources. These unwanted 

signals are called zingers. Since zingers are randomly located over a detector active 

area, they can be revealed by comparing two or more scattering images taken in 

essentially identical conditions. Any statistically significant difference between these 

images is presumed to arise from zingers and should be removed, or de-zingered, to 

improve data quality. As noted in the last section, two nominally identical X-ray 

images were collected for a given experimental condition (i.e. sample identity and 

temperature) for the de-zingering process. At the rotating anode beamline, the de-

zingering process was carried out manually with the program TVX after a data 

collection was completed. In the G1 beamline, the program SPEC was set to de-zinger 

the two images automatically after the X-ray exposures. As expected, longer X-ray 

exposure times are inevitably accompanied by more zingers. We therefore limited the 

maximum exposure time to 300 seconds for each image with the rotating anode 

beamline. If the needed total exposure time exceeded 600 seconds, more than two 

images would be taken consecutively to split the exposure time. The short exposure 

time employed in the G1 beamline did not require a similar limitation. 

A de-zingered image then underwent a dark current subtraction with a de-zingered 

dark image. Again, TVX was used to manually carry out the process in the rotating 

anode beamline while dark currents were automatically subtracted in the G1 beamline. 

Finally, the images were corrected for the image distortions intrinsic to CCD detectors 

using a distortion correction map. The method of producing a distortion correction 

map is described in Barna et. al. (1999). TVX and SPEC were respectively used to 

perform the distortion correction for the rotating anode and G1 data. The image 

correction process is summarized in Figure 3.6.1. 
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Corrected images were then azimuthally integrated to generate X-ray scattering 

profiles (e.g., Figure 3.2.11). The azimuthal integration involves integrating the 

scattering intensities along a circumference with a specific radius. This process carries 

on with an ever increasing radius until the image edges are reached. All the data, 

collected both with the rotating anode and G1 beamline, were integrated with TVX, in 

which the radius range could be set to exclude the beam stop shadow. The resultant X-

ray scattering profiles, expressed as scattering intensity versus radial distance from the 

center (in pixel number), provided information of the repeat distances and lipid phases 

of the cardiolipin samples, from which the electron density maps were reconstructed 

(Section 4.3). The repeat distances were determined with TVX by evaluating peaks 

positions in |Q| while lipid phase assignments were performed according to the 

principles outlined in Section 3.2.3. The vast majority of the lipid phase 

determinations were straightforward and unambiguous. However, assigning lipid 

phases to X-ray images displaying crystalline-like patterns and phase separation 

phenomenon was more complicated. For those two types of data, more effort was 

dedicated to determining the lipid phases and will be detailed in Sections 4.4 and 4.5.  

The nominal lipid concentrations also needed to be calibrated. Ideally, the nominal 

concentration was supposed to reflect the real sample concentrations. However, many 

experimental errors could be introduced in determining the sample concentrations with 

a gravimetric method. It was noticed that d-spacing of the lipid liquid crystalline Lα 

phase invariantly demonstrated a power law relationship with the lipid concentration 

(Figure 3.6.2 and also Section 4.3.1). Due to the higher accuracy in the d-spacing 

measurement, the lipid concentration derived from d-spacings and the power law 

relation was expected to be more reliable and closer to the real sample concentration. 

We therefore calibrated the sample concentrations accordingly by first fitting the d-
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spacing against nominal concentration curves with power laws and then fed the d-

spacings back to the obtained equations to yield the calibrated sample concentrations. 

X-ray scattering data collected at 20 °C and ambient pressure, including those from 

the homogeneity tests, were used for this calibration process. The result of the 

calibration is shown in Table 3.6.1. Due to the limited amounts of the samples, this 

calibration process was not carried out on the cardiolipin-salt solution mixtures.  
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Figure 3.6.1. Summary of the X-ray image correction process. The raw images (top), 

with strong zingers such as that highlighted, are de-zingered to generate a zinger-free 

image (middle). Dark currents are then subtracted from this de-zingered image using a 

dark image collected for this data set (bottom left). The distortion correction process 

follows to produce the final image (bottom right). The circles in the bottom images 

compare ellipticity of the scattering rings before and after the distortion correction. 
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Figure 3.6.2. d-spacing as a function of lipid fraction for the cardiolipin-water mixtures 

at different temperatures. The data points were seen to follow parallel power law 

relations, which can be utilized to calibrate the sample concentrations (see the text). The 

power laws fitted to the data are y = axb+c with a = 24.56, b = -1.292, c = 18.01 for       

20 °C; a = 24.72, b = -1.263, c = 16.59 for 40 °C; a = 25.81, b = -1.215, c = 14.21 for    

60 °C. 
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Table 3.6.1. Nominal and calibrated sample concentrations of the cardiolipin-water 

mixtures used in this thesis study. 

 
Nominal concentration (wt %) Calibrated concentration (wt %) 

32.9 32.9 

38.0 37.9 

44.2 44.0 

49.1 49.5 

53.9 53.6 

55.1 55.3 

55.6 55.3 

60.0 59.8 

60.2 60.0 

66.5 66.8 

68.5 69.5 

72.5 72.9 

77.1 78.2 

79.8 79.8 

80.7 79.9 

82.1 80.6 

85.1 83.0 

86.3 85.4 

86.7 87.8 
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CHAPTER 4 

PHASE BEHAVIOR OF CARDIOLIPIN LIQUID CRYSTALS 

4.1 Introduction 

 

In this chapter, I present the experimental results of this thesis study. These results can 

be summarized in a temperature-composition phase diagram of the cardiolipin-water 

mixtures, which covers the lipid concentrations from 32.9 wt% to 85.4 wt% in the 

temperature range of -20 °C to 60 °C and will be discussed in Section 4.2. Based on 

the underlying data of the phase diagram, electron density maps of the cardiolipin-

water mixtures were reconstructed and presented in Section 4.3, to provide a structural 

explanation to the observed phase boundaries. Two striking features were also 

observed in the phase diagram: the presence of a lamellar-lamellar phase separation 

region and a phase displaying crystalline-like X-ray scattering patterns at the high 

concentration limits. Two dedicated sections, 4.4 and 4.5, will explore the nature and 

origins of these two phases. The results for the cardiolipin-alkane-water mixtures are 

presented in Section 4.6. 

 

4.2 Temperature-Composition Phase Diagram 

 

Previous studies have established that, upon mixing with sodium, calcium or other 

cation salts, cardiolipin can spatially arrange into the liquid crystalline HII phase 

(Seddon et. al., 1983; Rand and Sengupta, 1972). This phenomenon was ascribed to 

the reduction of electrostatic repulsion among the charged headgroups, which 

enhanced the wedged molecular shape contributed by the bulky hydrocarbon chain 

region of the lipid (see Sections 1.3 and 2.3). It is therefore predictable to observe, 

within the temperature and concentration ranges examined in this thesis study, that 



113 

cardiolipin predominantly assumed the Lα phase when suspended in pure water 

without the presence of counterions (Figure 4.2.1). Moreover, presumably due to the 

absence of counterions, the d-spacing of the Lα phase expanded indefinitely with 

increasing water amount and never coexisted with bulk water as zwitterionic lipid-

water systems do (see Section 4.3.1 for detailed discussion). Nevertheless, a variety of 

phase transitions, including the one to the HII phase, still occurred even without 

counterions when the cardiolipin-water mixtures were at high concentration.  

At low temperatures, approximately <-15 °C, the main transition occurred, in 

which the liquid crystalline Lα phase transformed to a gel phase. Unlike the Lα phase, 

d-spacing of the phase was observed to assume an essentially fixed value of 58.0±0.5 

Å at -20 °C regardless of the sample concentration. The gel phase was thus inferred to 

coexist with bulk water, i.e., being in the excess water condition (refer to Section 4.3.1 

and Figure 4.3.1a for details). The origin of this excess water condition is not very 

clear since electrostatic interactions arising from the charged headgroup are presumed 

to overwhelm any inter-bilayer van der Waals attraction needed for the excess water 

condition to occur (see also Section 2.2.1). However, we speculated it to be involved 

with oscillatory hydration interactions, which might result in net inter-bilayer 

attraction even in the presence of surface charges (Section 2.2.2). This will be further 

discussed in Section 4.3.3. In the concentration range of 55.3 wt% to 72.9 wt% or 

beyond, peculiar phase behavior was observed before formation of the gel phase at 

lower temperatures (the "Lα1+ Lα2" region of Figure 4.2.1). The upper boundary of this 

phase region shifted toward higher temperatures with increasing sample concentration 

and was speculated to drop dramatically as the sample concentration approached 78.2 

wt% (the dashed line in the "Lα1+ Lα2" of Figure 4.2.1). As illustrated in Figure 4.2.2, 

the scattering peaks arising from the Lα phase in this concentration range apparently 
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Figure 4.2.1. Temperature-composition phase diagram of cardiolipin-water mixtures. 

Data points of each concentration were backed by a separate sample. The dashed lines 

are the speculated phase boundaries. The phase displaying crystalline-like diffraction 

patterns is designated as the "tiny crystals-cluster (TC)" phase. Red upward triangles 

represent the Lα phase; Green diamonds the lamellar-lamellar phase separation region; 

blue downward triangles the Lβ phase; orange right-pointing triangles the Lα-Lβ phase 

coexistence region; downward triangles the Lα-TC phase coexistence region; left-

pointing triangles the HII-TC phase coexistence region; crosses the Lα-HII phase 

coexistence region. Straight-line boundaries are, obviously, simplifications and 

approximations. 
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Figure 4.2.2. X-ray diffraction images of a 59.8 wt% cardiolipin-water mixture at -5 

°C (a), showing diffraction peaks from a single lamellar phase, and at -13 °C (b), 

displaying an additional diffraction peak presumably from another lamellar phase. 

Numbers index the peaks, with different colors for the two different phases. 
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split into two sets of peaks when temperature was depressed. The two sets of peaks 

changed their positions with temperature differently and could not be collectively 

indexed as a single phase. This fact may indicate that the peaks arose from two 

coexisting phases. Indeed, the Gibbs phase rule, (degree of freedom) = (number of 

chemical components) - (number of coexisting phases) + 2, allows two phases to 

coexist within a lipid-water system when it is in the limited water condition (this fact 

applies to the other coexisting regions observed in the phase diagram of Figure 4.2.1). 

The WAXS data confirmed the melted state of the hydrocarbon chains and the liquid 

crystalline nature of the two coexisting phases (Figure 4.2.3). However, as will be 

discussed in Section 4.4, only three scattering peaks at most could be resolved 

unambiguously for each of the two phases. In some cases, the scattering peaks from 

the two phases even overlapped (e.g., Figure 4.2.3b). These two constraints limited 

certainty of the phase assignment. Many of the X-ray scattering profiles could 

unambiguously reveal the nature of one of the coexisting phases but comparison with 

other profiles collected at different temperatures for the same sample was necessary 

for indexing the other phase. For example, in Figure 4.2.3b the set of scattering peaks 

with smaller d-spacing (or higher |Q| values) were clearly from a phase in the lamellar 

configuration because the four peaks were equally spaced even though one of them 

was overlapped. Nevertheless, the peak overlap reduced the total unambiguous peaks 

of the other phase and incurred uncertainty to phase assigning. By comparing this 

diffraction profile with that collected at a slightly higher temperature (Figure 4.2.3b 

inset), we might, with decent certainty, determine that the set of peaks with larger d-

spacing was also from a lamellar phase, even though the higher temperature profile 

still exhibited the peak overlap problem. We therefore labeled this region as the 

"lamellar-lamellar phase separation" region. However, this region may still need to be 

understood as a "phase region consistent with two lamellar phases coexistence" in the  
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Figure 4.2.3. WAXS scattering image (a) and azimuthally integrated profile (b) 

collected in the lamellar-lamellar phase separation region (see the text for the labeling) 

from a 66.1 wt% cardiolipin-water mixture at -10 °C. Black and red dashed lines in (b) 

are the expected peak position for the Lα1 and Lα2 phases (see the text for the phase 

assignment), respectively. The diffuse scattering peak indicated by black arrows was 

from the melted hydrocarbon chains. No sharp peak arising from the hydrocarbon 

chains of a gel phase was observed. A red arrow in (b) denotes an artifact. The inset in 

(b) highlights the SAXS regime and compares the diffraction profile collected at this 

temperature (-10 °C) with that at -5 °C. Black and red arrows in the inset denote the 

peaks from the Lα1 phases at -10 °C and -5 °C, respectively. The first and second 

order peaks of the Lα1 phase were unambiguously resolved at -10 °C whereas the 

resolvable peaks for the Lα1 phase were the second and third orders at -5 °C. The first 

order peaks of the Lα1 and Lα2 phases overlapped at -5 °C (green arrow).  
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most rigorous sense. These two coexisting lamellar phases exhibited remarkably 

distinct d-spacings and rates of d-spacing variation with temperature (e.g., Figure 

4.2.4). We designated the lamellar phase with the larger d-spacings as the Lα1 phase 

and the other as the Lα2 phase. Moreover, repeated temperature scans (e.g., Figure 

4.2.4) attest that the two liquid crystalline lamellar phases were thermodynamically 

stable phases. Whether these two phases arose from a differential water distribution or 

other physical effects will be discussed in Section 4.4. 
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Figure 4.2.4. d-spacings of the lamellar phases as a function of temperature for a 59.8 

wt% cardiolipin-water mixture. Between the two dashed lines is the lamellar-lamellar 

phase-separation region. 
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When the sample concentration increased, the main transition temperature in the 

lamellar-lamellar phase separation region remained at -15.5±0.7 °C until the 

concentration reached 78.2 wt%. Beyond this concentration, the phase boundary 

between the Lα and the gel phases became obscure and another two-phase coexistence 

region emerged. The WAXS data demonstrated the frozen state of the hydrocarbon 

chains and, based on the d-spacings exhibited by the two phases (58.3 Å and 52.7 Å at 

5 °C), we determined that this was a Lα-gel phase coexistence region (Figure 4.2.5). 

Both the upper and lower boundaries of this phase coexistence region moved to higher 

temperatures when the sample concentration increased. A plausible explanation to this 

observation might be as follows: In the lateral stress profile of a lipid monolayer, three 

interactions must be balanced with one another. They are repulsions among 

headgroups, hgπ , and hydrocarbon chains, chπ , and attraction arising from 

hydrophobic-hydrophilic interfacial tension, phobγ  (Shearman et. al., 2006; Marsh, 

2008). That is to say, the equation phobchhg γππ =+  must be satisfied. As reported in 

Luzzati and Husson (1962), the average surface area per headgroup of a lipid shrank 

when the sample concentration increased, even in the cases of charged lipids. 

Accordingly, the cardiolipin headgroups are expected to become closer to one another 

when the water content is lower, which results in stronger hgπ  due to the enhancing 

electrostatic and/or steric interactions (refer to Chapter 2 for a theoretical description). 

Since phobγ  is likely not much unchanged in this situation, the hydrocarbon chain 

repulsion, hgphobch πγπ −= , would decrease accordingly, allowing the chains to pack 

more tightly. Stronger thermal motions are thus needed to break the tighter packing, 

leading to higher main transition temperatures.  

In the higher temperature regime, the liquid crystalline HII phase gradually 

emerged when the sample concentration was over 72.9 wt% (Figure 4.2.1). However,  
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Figure 4.2.5. WAXS scattering image (a) and azimuthally integrated profile (b) 

collected in the Lα-gel phase coexistence region from a 85.8 wt% cardiolipin-water 

mixture at -5 °C. Black and red dashed lines in (b) are the expected peak positions for 

the lamellar gel (d-spacing = 58.3 Å) and Lα (d-spacing = 52.7 Å) phases, 

respectively. A sharp diffraction peak (black arrows) arose from the frozen, structured 

hydrocarbon chains of a gel phase and is flanked by two shoulders (green arrows). The 

presence of the two shoulders may imply formation of the Lβ' phase. However, we 

refrained from further differentiating the gel phases due to data quality. A red arrow 

denotes an artifact. 
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the non-lamellar phase never appeared alone and always coexisted with the Lα phase 

in the absence of counterions and the experimental conditions studied here. The 

Lα↔Lα+HII phase transition temperature was seen to decrease with increasing lipid 

concentration. This was because removal of water diminished surface areas of the 

headgroups (see the above discussion and refer to Luzzati and Husson (1962)) and 

thus enhanced the propensity for the cardiolipin monolayers to bend toward water 

(equivalent to increasing the monolayer curvature). As discussed in Section 2.2.3, the 

HII structure with a larger water core radius is under higher hydrocarbon chain packing 

stress due to the geometrical constraint (Gruner, 1985). On the other hand, when the 

water content decreases, the potential water core dimension of the HII phase should 

shrink and the packing strain would diminish accordingly. This might constitute 

another factor favoring formation of the HII phase at higher sample concentrations, as 

observed. The importance of the hydrocarbon chain packing stress in the Lα↔Lα+HII 

phase transition is further emphasized by the experimental result obtained from the 

cardiolipin-alkane-water mixtures. It was shown that adding alkane into the 

cardiolipin-water mixtures dramatically lowered the temperatures and concentrations 

required for the Lα↔Lα+HII phase transition to occur (Section 4.6). Despite the higher 

(negative) spontaneous curvature and weaker packing stress, in the absence of 

counterions, the HII phase only coexisted with the Lα phase and was never seen as a 

single phase however high the sample concentration was. This suggests that 

combination of the two driving factors was still unable to overcome the dominance of 

the electrostatic interactions arising from the charged headgroups. Other interactions 

that might have contributed to the cardiolipin phase preferences include hydration 

interactions (Section 2.2.2) and bilayer thermal undulations (Section 2.2.6). 

Nevertheless, with the usual functional forms, the hydration interactions contributions 

are indistinguishable from those of the monolayer elastic energy (Tuner, 1990). 
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Therefore, it is unclear whether the hydration interactions favor the HII phase or the Lα 

phase. In contrast, Equation 2-19 suggests stronger thermal undulation repulsion for 

bilayers at higher temperatures and with thinner water layers. This trend might further 

amplify the energetic penalty for the cardiolipin liquid crystals to remain in the Lα 

phase when temperature and the sample concentration were all increased. 

As the lipid concentration increased beyond ~86 wt%, an unexpected phase was 

observed at temperatures >20 °C (denoted as NC in Figure 4.2.1). This phase 

displayed X-ray scattering patterns that were reminiscent of the scattering from a 

cluster of tiny crystals (e.g. Figure 4.2.6a), and coexisted with the Lα phase and the HII 

phase at lower and higher temperatures, respectively (e.g. Figure 4.2.7). The scattering 

pattern of this phase evolved with time at an incubation temperature of 30 °C or 40 °C, 

to typical X-ray powder diffraction patterns (e.g., Figure 4.2.6b). This temporal 

evolution of the scattering pattern was shown to be the result of lipid degradation upon 

prolonged high temperature incubation. An attempt to index the diffraction peaks and 

discussion regarding the nature of the phase will be presented in Section 4.5. 

Comparing the phase diagram of our cardiolipin system (Figure 4.2.1) with those 

of other charged phospholipids is not easy, due to the scarcity of the temperature-

composition phase diagrams reported for other charged phospholipids with the C18:1 

hydrocarbon chains. Koynova and Caffrey (2002) compiled an index listing all the 

available temperature-composition phase diagrams reported until July, 2001. Within 

the list, we found the phase diagrams of the charged phospholipids, DOPA (C18:1) 

and DMPS (C14:0); the latter was the only available phosphatidylserine species with 

its temperature-composition phase diagram mapped. Compared to DOPA, our 

cardiolipin system lacked a single HII phase region seen in the DOPA-water mixtures 

with sample concentrations >65 wt% (Figure 4.2.8a; Lindblom et. al., 1991). This 
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Figure 4.2.6. X-ray diffraction images of an 86.6 wt% cardiolipin-water mixture after 

incubation at 40 °C for 4 hours (a), in which a crystalline-like diffraction pattern is 

shown, and for 22 hours (b), in which the crystalline-like pattern transformed to one 

indicative of smaller crystalline regions. 
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Figure 4.2.7. Azimuthally integrated X-ray scattering profiles of an 87.8 wt% 

cardiolipin-water mixture collected at 15 °C (a) and 45 °C (b). Black and red dashed 

lines denote the diffraction peaks from the Lα (a) or HII (b) phase and the TC phase, 

respectively. Arrows denote artifacts because the peaks are not observed in the 2-D 

diffraction image. Their shapes changed with the area that was integrated, and their 

positions were independent of the sample temperature. 
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discrepancy is expected to arise from the difference in the charge densities per 

molecule of the two lipids. With two negative charges carried by a molecule, the 

spontaneous curvature of cardiolipin is speculated to be smaller than that of single-

charged DOPA, even though the bulky quadruple chain configuration should increase 

the spontaneous curvature. Indeed, studies have shown that DOPA could form the 

single HII phase at pH ≤ 3.7 whereas only the Lα+HII phase coexistence was observed 

for the bovine heart cardiolipin (>88% C18:2 cardiolipin) even when pH was as low as 

2.8 (Farren et. al., 1983; Seddon et. al, 1983). This understanding re-emphasizes the 

importance of the electrostatic lateral repulsion in determining the spontaneous 

curvature (see Section 2.2.5) and thus the phase preference of cardiolipin.  

On the other hand, our cardiolipin system demonstrated richer phase behavior 

when compared with DMPS at above-zero temperatures and comparable 

concentrations (Figure 4.2.8b; Hauser et. al., 1982). In the lipid concentrations from   

0 wt% to 100 wt%, only the main transition (Lβ’↔Lα) was observed for DMPS. Since 

both the headgroup type and hydrocarbon chain species in DMPS are different from 

those of our cardiolipin system, we are unable to ascribe the discrepancy in phase 

behavior to any of the factors unambiguously. As mentioned in Section 2.2.5, DOPS 

(C18:1) exhibited the spontaneous curvature of +1/144 Å-1 when counterions were 

absent (Fuller et. al., 2003). This already unusually small spontaneous curvature might 

be further reduced as the shorter hydrocarbon chain length and lower chain saturation 

of DMPS (C14:0) are expected to diminish the hydrocarbon chain splaying. This 

might explain why only the main transition was observed in the DMPS system even in 

the extremely low water contents.  

The above comparisons are consistent with the observed non-lamellar structure-

forming tendency of PA > Cardiolipin > PS, reported in Lewis and McElhaney (2000). 
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Figure 4.2.8. Temperature-composition phase diagrams of the charged phospholipids, 

DOPA (a) and DMPS (b). Squares in (a) denote the collected data points. See the text 

for their comparisons with the cardiolipin system reported here. (a) is from Lindblom 

et. al. (1991); (b) is from Hauser et. al. (1982). 
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Quantitatively, this should indicate that the spontaneous curvature of our cardiolipin 

system without counterions was in the range from -1/130 Å-1 (for DOPA; Kooijman 

et. al., 2005) to +1/144 Å-1 (for DOPS; Fuller et. al., 2003). One may accordingly 

speculate that the doubly charged headgroups of cardiolipin result in a spontaneous 

curvature smaller than that of single-charged DOPA whereas the bulky quadruple 

chain configuration of cardiolipin leads to a larger (and perhaps negative) spontaneous 

curvature when compared with DOPS, which possesses bulkier headgroups. This 

intermediate spontaneous curvature might also have contributed to formation of the 

TC phase. It should be noted that the phase diagram of DOPA does not cover any sub-

zero temperature (Figure 4.2.8a). It is therefore not clear whether DOPA will display 

the lamellar-lamellar phase separation phenomenon observed here when temperature 

is depressed. Also, both of the compared phase diagrams are supported by very few 

data points. Doubts are therefore cast on the reliability of the phase diagrams, which 

further exacerbates the scarcity of the available phase diagrams for charged 

phospholipids. This is one of the reasons that we decided to systematically study our 

chosen charged phospholipid in wide temperature and concentration ranges.  

In the next section, we shall discuss the structural parameters of the phases 

observed in the phase diagram of Figure 4.2.1. These structural parameters varied both 

when the cardiolipin-water mixtures were within and across the phase boundaries. We 

begin with the discussion on how the unit cell dimension of each phase changed with 

temperature and concentration and then proceed to the individual structural parameters 

by reconstructing the electron density map of each phase. The structural information is 

expected to shed light on the mechanisms behind the phase transitions.  
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4.3 Electron Density Map Reconstruction and Structural Parameter Analysis 

4.3.1 General Trend of the Unit Cell Dimension  

 

In this section, we will examine the general trend of the unit cell dimension variation 

induced by changes in temperature and concentration. Reconstruction of the electron 

density maps will follow to extract the individual structural parameters and to 

understand the mechanisms behind the unit cell dimension variations. Figure 4.3.1a 

and Table 4.3.1 shows the d-spacings of the Lα and gel phases as a function of the 

sample concentration at representative temperatures. The apparent insensitivity to the 

sample concentration of the gel phase unit cell dimension led to the conclusion that the 

gel phase was in the excess water condition over the entire concentration range 

covered here. On the other hand, the d-spacing of the Lα phase decreased 

monotonically with the water content and appeared to follow a power law trend as 

shown in Figure 4.3.1b. It can also be seen in Figure 4.3.1b that a temperature change 

simply shifted the curve in parallel to lower d-spacing values without distorting its 

overall shape. As detailed in Section 3.6, these features were exploited to calibrate 

lipid concentration of the cardiolipin-water mixtures because measurements with the 

X-ray scattering were more reliable than the gravimetrical measurements for the 

nominal sample concentrations. A peculiar feature was observed with the -10 °C curve 

of Figure 4.3.1a, in which two d-spacing values emerged simultaneously in the sample 

concentrations from 55.3 wt% to 72.9 wt%, corresponding to the lamellar-lamellar 

phase separation region of Figure 4.2.1. The two distinct d-spacings were ascribed to 

the scattering from the Lα1 and Lα2 phases, respectively, as noted in Section 4.2. 

Interestingly, while d-spacing of the Lα2 phase remained constant with respect to the 

sample concentration, unit cell dimension of the Lα1 phase expanded with increasing 

lipid fraction. This behavior of the Lα1 phase is opposite to the general trend of the unit 
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Figure 4.3.1. (a) d-spacing as a function of lipid fraction for the cardiolipin-water 

mixtures in the lamellar phases. The curves were compiled from many data 

collections, with each concentration backed by a separate sample. Error bars of the 

data points are smaller than the mark size and were estimated based on the sample 

homogeneity tests (see Section 3.5). See the text for the discussion on the peculiar 

feature of the -10 °C curve. (b) Power law fits to the relationship between d-spacing 

and the lipid fraction for the Lα phase at 20 °C, 40 °C and 60 °C. The power laws 

fitted to the data are y = axb+c with a = 24.56, b = -1.292, c = 18.01 for 20 °C; a = 

24.72, b =   -1.263, c = 16.59 for 40 °C; a = 25.81, b = -1.215, c = 14.21 for 60 °C. 
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Table 4.3.1. d-spacings of the cardiolipin-water mixtures in the lamellar phases 

observed in this thesis study (see also Figure 4.3.1). d is the d-spacing in Å; LC  is the 

lipid fraction. 

 
 60 °C      40 °C      20 °C     -10 °C  -20 °C  

LC  d LC  d LC  d LC  d LC  d 

0.329 113.6 0.329 117.0 0.329 121.1 0.329 129.7 0.553 58.4 

0.495 74.8 0.379 100.8 0.379 104.1 0.379 111.4 0.598 58.4 

0.536 69.2 0.440 86.3 0.440 88.9 0.440 95.0 0.668 58.5 

0.553 67.0 0.495 76.7 0.495 78.9 0.495 83.8 0.695 58.6 

0.695 54.5 0.536 71.0 0.536 73.1 0.536 77.8 0.729 58.4 

0.729 52.5 0.553 68.8 0.553 70.8 0.553 75.2 0.782 57.3 

0.782 49.5 0.553 68.8 0.553 70.8 0.553 75.4 0.798 57.6 

0.798 48.6 0.598 63.8 0.598 65.7 0.598 71.4/55.5 0.799 57.6 

0.799 48.5 0.668 57.7 0.600 65.5 0.668 74.6/54.8 0.806 57.3 

0.806 48.2 0.695 55.8 0.668 59.4 0.695 81.1/54.8 0.830 58.3 

0.830 44.7 0.729 53.6 0.695 57.3 0.729 55.0 0.854 48.5 

  0.782 50.6 0.729 55.0 0.782 53.8 0.878 57.6 

  0.798 49.7 0.782 51.86 0.798 53.3   

  0.799 49.6 0.798 50.9 0.799 53.1   

  0.806 49.2 0.799 50.8 0.806 52.9   

  0.830 47.1 0.806 50.5 0.830 53.0   

    0.830 49.3 0.854 54.0   

    0.854 48.1     

    0.878 47.1     

 

cell dimension variations observed for the cardiolipin-water mixtures in other 

experimental conditions. We will rely on the individual structural parameters extracted 

from the electron density map reconstruction to explore the nature of these two 

coexisting lamellar phases and the reason behind this peculiar behavior (Section 4.4). 

Unit cell dimension variation per unit temperature was also scrutinized for the Lα 

phase over the entire sample concentration range. The values of the parameter were 
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determined by the slopes of the linear fits to the d-spacing versus temperature relations 

in the single Lα phase regions (e.g., the region to the right of the area defined by two 

dashed lines in Figure 4.2.3); the error bars were the 95% confidence bounds of the 

fitted slopes (Figure 4.3.2 and Table 4.3.2). Temperature sensitivity of the Lα unit cell 

dimension was seen to diminish with increasing sample concentration initially. At the 

lipid concentration of ~80 wt%, temperature dependence of the unit cell dimension 

reached a turning point and intensified thereafter with increasing lipid fraction. Again, 

understanding the mechanism behind this observation suggested a need to decompose 

the unit cell dimensions into individual structure parameters by reconstructing electron 
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Figure 4.3.2. Magnitude of the unit cell dimension variation per unit temperature as a 

function of lipid fraction for the cardiolipin-water mixtures in the Lα phases. The curve 

was compiled from 19 samples, with each concentration backed by a separate sample. 

See the text for the discussion. 
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Table 4.3.2. Temperature dependence of unit cell dimension variation for the 

cardiolipin-water mixtures in the Lα phase. 
LCdTda )/(  is the unit cell dimension 

variation per unit temperature for a given sample concentration in Å/K; a is the unit 

cell dimension in Å; T is temperature in K; LC  is the lipid fraction. The errors for 

some samples are not shown because their values are smaller than the distance 

resolution of the SAXS experiments.  

 
LC  

LCdTda )/(  

0.329 -0.22±0.02 

0.379 -0.21±0.02 

0.440 -0.14±0.01 

0.495 -0.12±0.01 

0.536 -0.12±0.01 

0.553 -0.13±0.01 

0.553 -0.13±0.01 

0.598 -0.11±0.01 

0.600 -0.10±0.01 

0.668 -0.10±0.01 

0.695 -0.08 

0.729 -0.07 

0.782 -0.07 

0.798 -0.08 

0.799 -0.07 

0.806 -0.07 

0.830 -0.13 

0.854 -0.20±0.09 

0.878 -0.15±0.03 
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density map. Data presented in Section 4.3.3 suggests that the initial decline in the 

temperature dependence of the Lα phase was the result of thinner water layers and 

thicker lipid bilayers at denser sample concentrations. See that section for details.  

Obtaining the unit cell dimension-lipid fraction relationship for the HII phase is not 

as straightforward as for the lamellar phases. The HII phase consistently coexisted with 

the Lα phase in the absence of counterions and water might thus not distribute evenly 

between the two phases. As a result, reconstructing electron density maps appears to 

be the only way to study structural parameters of the HII phase. Nevertheless, due to 

the great overlap of the Lα 1st order peak and the HII (1,0) peak, integrated peak 

intensities could not be determined unambiguously. This problem was exacerbated by 

the weak (1,1) and (2,0) peaks of the HII phase. We were therefore unable to 

reconstruct the electron density maps for the HII phase reliably and, within this 

chapter, limit our discussion to the lamellar phases.  

 

4.3.2 Electron Density Map Reconstruction 

 

Detailed structural information of a lipid liquid crystalline phase can be extracted from 

its electron density map. An electron density map spatially shows electron number 

densities within a molecule or a group of molecules and is the Fourier transform of 

intensities and phases of the X-rays scattered by an object (see Section 3.2.1 for the 

theory background). A typical electron density profile of a phospholipid liquid crystal 

in the bilayer structure is shown in Figure 4.3.3, in which three Gaussian functions are 

used to model the spatial configuration of two lipid molecules forming the bilayer. 

The electron-thick, phosphorus-containing regions of the lipid headgroups are 

represented by two Gaussian peaks, and the electron-thin region of hydrocarbon 
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Figure 4.3.3. Typical electron density profile of a phospholipid liquid crystal in the 

bilayer structure. The abscissa is the distance from the bilayer center along the bilayer 

normal. The peaks and the trough correspond to the lipid molecules shown below. 

 

chains is by the other inverted Gaussian. The inter-bilayer water volume is 

conveniently assumed to bear zero electron density. The electron density profile )(zρ  

of a lipid molecule is therefore formulated as (Pabst et. al., 2003a), 
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width at half maximum of the respective peaks), and the definitions of Hz , Cρ  and 

Hρ  are as illustrated in Figure 4.3.3. We define 0=aρ  as the electron density of the 

inter-bilayer water since the profile can always have an arbitrary additional constant. 

Based on these parameters, one can decompose the unit cell dimension d to the bilayer 

thickness Bd  and the bilayer separation Sd  with the following relations, 

 

( )HHB zd σ22 +=  (4-2) 

and 

BS ddd −= . (4-3) 

 

The bilayer thickness Bd  defined here is different from the traditional Luzzati bilayer 

thickness determined with the lipid volume fraction Lφ  (Luzzati and Husson, 1962; 

Nagle and Tristram-Nagle, 2000), 

 

dd LLuzzatiB φ=, , (4-4) 

 

and employed widely in the field (e.g., Gruner et. al., 1988 and Harper et. al., 2001). 

Because the volumetric information for our cardiolipin system was not readily 

available, we could not conveniently apply Equation 4-4 to decompose unit cell 

dimensions of the Lα phase and had to rely on the electron density profile 

reconstruction for the same purpose. In the context of the electron density profile, the 

Luzzati bilayer thickness corresponds to the distance between the two phosphate peaks 

(i.e., Hz2 ) in the profile and does not explicitly take into account the blurred 

interfacial boundary between lipid and water (Rappolt et. al., 2003). This discrepancy 

in definition deserves a special caution especially in comparing the results obtained 

here with the literature data. 
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In principal, other structural parameters such as the hydrocarbon chain length Cd , 

the cross sectional area per lipid molecule lA  and the number of the inter-bilayer 

water molecules per lipid Wn  can also be derived from the electron density map 

through (Pabst et. al., 2000; Pabst et. al., 2003b),  

 

1HHC dzd −= , (4-5) 
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where 1Hd  is the distance from the phosphate group to the hydrophobic-hydrophilic 

interface, 
2CHρ  is the electron density of the methylene group on the hydrocarbon 

chains, WV  is the volume of a water molecule, and e
Cn  and e

Hn  are numbers of 

electrons per lipid molecule of the hydrocarbon chains and headgroup, respectively. In 

calculating Cd , a fixed value of 4 Å was adopted by Lewis et. al. (2007) and Pabst et. 

al. (2003) for 1Hd . Obviously, this value is only an approximation since Cd  is 

expected to change with factors including water content and temperature, as will be 

discussed in Section 4.3.3. We therefore will not further decompose the bilayer 

thickness into the headgroup dimension and the hydrocarbon chain length. The 

difference between the bilayer thickness and the hydrocarbon chain length will be a 

constant and have no effect on our analysis here even if the approximation holds true. 

In addition, Equations 4-6 and 4-7 are of no use here unless volumetric information of 

our cardiolipin system is available to calculate e
Cn  and e

Hn  (Nagle and Tristram-Nagle, 

2000; Petrache et. al., 1998). As a result, we only extracted the bilayer thickness and 
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inter-bilayer distance from the electron density profiles reconstructed in this thesis 

study. Nevertheless, the two structural parameters still provide valuable insight in 

structurally explaining phase behavior of the cardiolipin-water mixtures.  

Conventionally, to reconstruct electron density maps one has to accurately 

measure the intensities and determine the phases of the scattered X-rays (Turner and 

Gruner, 1992; Harper et. al., 2001). This conventional method also entails that at least 

four and five X-ray scattering peaks are resolved for the Lα and HII phases respectively 

to produce electron density maps with decent precision (Rappolt et. al., 2003; Nagle 

and Tristram-Nagle, 2000; Pabst et. al., 2000). However, most of the X-ray scattering 

data collected for this thesis study could at best provide three resolvable Bragg peaks. 

We therefore had to employ another method described in Pabst et. al. (2000, 2003a 

and 2006), based on reasonable a priori assumption, to reconstruct electron density 

maps from our data. This method is referred as the line-shape fitting method in this 

thesis study and is elaborated below. 

Intensities, I(Q), of the X-rays scattered by lipid molecules arranged in an 

unoriented multilayer structure (i.e., stacks of bilayer structures as seen in this thesis 

study) can be expressed as,  

 

2

2)()(
)(

Q
QFQS

QI = , (4-8) 

 

where Q is the momentum transfer vector (refer to Section 3.2.1), S(Q) is the lattice 

structure factor describing the 1-D lattice order of the multilayer structure, and F(Q) is 

the structure factor derived from the Fourier transform of electron density profile of 

two lipid molecules arranged in the bilayer structure (Equation 4-1 and Figure 4.3.3). 
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Since positionally uncorrelated bilayers, behaving like unilamellar vesicles, may be 

also present along with the multilayer structures, an additional term is included to 

account for the diffuse scattering arising from these bilayers, 
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where uN  is a scaling constant. In formulating the lattice structure factor S(Q), the 

spatial arrangement of a lipid bilayer can be modeled as, 
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where N is the number of bilayers in the scattering domain, if the bilayers are perfectly 

flat and separated with a consistent distance d (i.e., repeat distance or d-spacing). 

Since lipid bilayers are not perfectly flat and stacked flawlessly, the thermal 

perturbations and lattice disorders must be taken into consideration in the real world 

and are addressed with the paracrystalline theory (Guiner, 1963) and the modified 

Caillé theory (Zhang et. al., 1994) in different circumstances. In the paracrystalline 

theory, individual bilayers are still treated as flat surfaces but with lattice disorders and 

thermal fluctuations about the equilibrium positions. The structure factor is thereby 

modified to,  
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where ∆  is the mean square fluctuation of the bilayer. The bilayers modeled by the 



144 

paracrystalline theory are a close approximation of the lipid gel structure, which is 

rigid and flat compared to the Lα phase. Therefore, the paracrystalline model was 

applied our data in reconstructing electron density profiles of cardiolipin-water 

mixtures in the gel phase. On the other hand, the assumption of a flat surface is 

invalidated by thermal undulations of the flexible lipid liquid crystalline Lα structure 

(Section 2.2.6). The structure factor has therefore to be further modified to, 
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where γ is Euler's constant and the Caillé parameter η is, 

 

BKd
TkB

22
π
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with B being the bulk compression modulus and K the bending modulus of the bilayer. 

The Caillé parameter also offers the valuable information regarding the bilayer 

flexibility, which may be important in understanding the origin and property of the 

coexisting lamellar liquid crystalline phases in the lamellar-lamellar phase separation 

region (see Section 4.4). Taken together, fitting data with Equations 4-9 to 4-13 and 

Equation 4-1 allows one to utilize entire data sets of collected X-ray scattering 

intensities, including shapes and amplitudes of the Bragg peaks and of diffuse 

scattering in between, and to retrieve electron density profiles even with a scarcity of 

the Bragg peaks. Given the significance of the line shape in this reconstruction 

method, influences of the beam geometry and background scattering were also taken 

into consideration here in processing the raw data prior to the electron density profile 

reconstruction. See Sections 3.5 and 3.6 for data collection and processing. 
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4.3.3 Electron Density Profile and Structural Parameters 

 

Typical diffraction profiles fitted with Equations 4-9 to 4-13 and Equation 4-1 are 

presented in Figure 4.3.4. It can be seen from the figure that the fits are in reasonable 

agreement with the data of lower lipid concentrations. As the lipid concentration 

increases, however, disagreements between the fits and data are larger. This 

phenomenon presumably arises from the inadequateness of modeling the bilayers with 

three Gaussians in high lipid concentrations as the bilayers may have actually been 

deformed in these conditions. Nevertheless, the electron density profiles were still 

reconstructed with this method (Figure 4.3.5) since the profiles are still able to provide 

some structural information with decent precision, such as the bilayer thickness.  

A temperature series of electron density profiles, from 5 °C to 60 °C, were first 

reconstructed for the cardiolipin samples in the concentration of 32.9 wt% and in the 

single Lα phase. The extracted structural parameters are presented in Table 4.3.3 and 

Figure 4.3.6 compares temperature variations of d-spacing, (Luzzati) bilayer thickness 

and (Luzzati) bilayer separation of the 32.9 wt% sample. It is seen in this comparison 

that the decrease in d-spacing of the Lα phase, as shown in Figure 4.3.1, is the 

combination of variations in the bilayer thickness and in bilayer separation. This is 

consistent with the observations from fully hydrated lipid liquid crystal systems, such 

as PEs with various hydrocarbon chain lengths (Rappolt et. al., 2003; Harper et. al., 

2001) and DOPC (Pan et. al., 2008), even though the cardiolipin system studied here 

was in the limited water condition. Due to lack of the volumetric information, data on 

the effective surface area of a lipid headgroup are inaccessible for our cardiolipin-

water system. However, it is still speculated that this surface area per headgroup 

increased when temperature went up, as demonstrated by other lipid-water systems 
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(a)                                                                  (b) 

(c)                                                                  (d) 

 

Figure 4.3.4. Representative azimuthally integrated X-ray scattering profiles fitted 

with Equations 4-9 to 4-12 and Equation 4-1 for the cardiolipin-water mixtures in the 

concentrations of 32.9 wt% (a), 55.3 wt% (b), 60.0 wt% (c) and 79.9 wt% (d). All 

datasets were collected at 20 °C. Deviation of the fits from the data became obvious 

when the lipid concentration increased. The fitted parameters are Hz  = 20.2 Å, Hσ  = 

3 Å, rρ  = -0.98, Cσ  = 4.5 Å, uN  = 0, N = 9.67, d = 121.9 Å, η = 0.06982 for (a); Hz  

= 19.7 Å, Hσ  = 3 Å, rρ  = -0.98, Cσ  = 6.2 Å, uN  = 0.01, N = 34.71, d = 71.2 Å, η = 

0.03433 for (b); Hz  = 19.5 Å, Hσ  = 3 Å, rρ  = -0.95, Cσ  = 6.2 Å, uN  = 0.4, N = 

49.36, d = 65.7 Å, η = 0.04114 for (c); Hz  = 21.2 Å, Hσ  = 3 Å, rρ  = -0.67, Cσ  = 4.7 

Å, uN  = 0.1, N = 85.62, d = 51.6 Å, η = 0.00021 for (d). 
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Figure 4.3.5. Typical electron density profiles of the cardiolipin-water mixtures 

constructed with the line-shape fitting method. The samples correspond to those in 

Figure 4.3.4. 
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(Harper et. al., 2001; Rappolt et. al., 2003; Pan et. al., 2008). Therefore, the decrease 

in the bilayer separation might result from higher inter-lamellar water penetration into 

surroundings of headgroups, which drove the lipid-water interface further towards the 

hydrophobic region (recall that the lipid-water interface does not exactly lies on the 

phosphorus of the headgroup, as discussed earlier). On the other hand, a decrease in 

the bilayer thickness was the consequence of stronger thermally induced splaying of 

the hydrocarbon chains (see Section 1.3.3). According to the decreasing rate (slope of 

the curve in Figure 4.3.6), shrinkage in the bilayer separation appears to play a bigger 

role in variation of the overall repeat distance. Moreover, this decreasing rate of the 

bilayer separation is also significantly larger than those observed in Harper et. al. 

(2001) for PEs and in Pan et. al. (2008) for DOPC. The discrepancy is speculatively 

due to the unique quadruple-chain configuration of cardiolipin because, in lamellar 

structures, bulky hydrocarbon tails must be accompanied by a larger headgroup 

surface area to fulfill the geometry requirement. Charges on the headgroups might also 

play its role in enhancing this discrepancy, since expansion of the surface areas might 

have otherwise been limited by the van der Waals attraction among headgroups, as in 

neutral lipids. Nevertheless, the relative magnitudes of the decreasing rates for the 

bilayer thickness and bilayer separation might have been reversed in high lipid 

concentrations. It is noted that the unit cell dimension variation per unit temperature, 

LCdTda )/( , for the Lα phase was depressed to values in the range of  -0.07 Å/K to       

-0.08 Å/K when the sample concentration was greater than 70.0 wt% (Table 4.3.2). 

These values are comparable to the decreasing rate for the Luzzati bilayer thickness 

(about -0.08 Å/K) shown in Figure 4.3.6. It is therefore reasonable to argue that in 

high lipid concentrations, the bilayer thickness variation surpassed the bilayer 

separation variation and became the only significant source of the d-spacing variation 

with temperature changes. This should explain the decreasing trend observed for 
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Table 4.3.3. Structural parameters of a 32.9 wt% cardiolipin liquid crystal at 

temperatures from 5 °C to 60 °C. The data were extracted from the Lα phase electron 

density profiles reconstructed with the line shape fitting method. T is the temperature 

in °C; d is the d-spacing in Å; η is the dimensionless Caillé parameter (Equation 4-13); 

Bd  is the bilayer thickness in Å (Equation 4.2); Sd  is the bilayer separation in Å; 

HLuzzatiB zd 2, =  is the Luzzati bilayer thickness in Å; LuzzatiSd ,  is the bilayer separation 

based on the Luzzati bilayer thickness in Å. Refer to Figure 4.3.4 for the definitions of 

Hz  and Hσ .  

 
T d η Hz  Hσ  Bd  Sd  LuzzatiBd ,

 
LuzzatiSd ,

 

5 125.6 0.07060 20.5 3.0 53.0 72.6 41.0 84.6 

10 124.3 0.06894 20.7 3.0 53.3 71.0 41.3 83.0 

15 123.1 0.06868 20.4 3.0 52.8 70.3 40.8 82.3 

20 121.9 0.06982 20.2 3.0 52.5 69.4 40.5 81.4 

25 120.8 0.06737 19.9 3.0 51.8 69.0 39.8 81.0 

30 119.8 0.06743 19.8 3.0 51.6 68.2 39.6 80.2 

35 118.8 0.06688 19.4 3.0 50.8 68.0 38.8 80.0 

40 117.9 0.06852 19.2 3.0 50.4 67.5 38.4 79.5 

45 117.0 0.06886 19.0 3.0 50.0 67.0 37.9 79.1 

50 116.1 0.07016 19.0 3.0 50.0 66.1 38.0 78.1 

55 115.2 0.07200 18.9 3.0 49.8 65.4 37.8 77.4 

60 114.5 0.07819 18.5 3.0 49.1 65.4 37.1 77.4 

 

LCdTda )/(  in Figure 4.3.2 when the lipid concentration increased. However, the 

reason for the reversal of the trend seen in even higher lipid concentrations is unclear 

although the bilayer thickness variation is still expected to be the only significant 

source of the d-spacing change in this case. 

To verify the observations in structural parameters, electron density profile 

reconstruction must be performed with other methods in addition to the line shape 
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Figure 4.3.6. d-spacing, bilayer thickness and bilayer separation of the 32.9 wt% 

cardiolipin liquid crystal in the Lα phase as a function of temperature. Circles 

represent the d-spacing, downward triangles the bilayer thickness, diamonds the 

bilayer separation, upward triangles the Luzzati bilayer thickness, and squares the 

bilayer separation based on the Luzzati bilayer thickness. Slopes for the Luzzati 

bilayer thickness and separation are also shown. 

 

fitting method. Because in some lipid concentrations, such as in 32.9 wt%, four X-ray 

scattering peaks were resolvable, we were able to reconstruct electron density profiles 

with the conventional peak integration method. The method is described in detail in 

Harper et. al. (2001). Readers are encouraged to consult the reference. In brief, 

electron density profile )(zρ  of two lipid molecules forming the bilayer structure was 

modeled with four cosine functions (depending on the number of the observable 

scattering peaks),  
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with the amplitude Ai being related to the scattering intensity Ii through, 
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where z is the distance from the bilayer center along the bilayer normal, avgρ  is the 

average electron density which was arbitrarily set to zero, d is the d-spacing of the Lα 

structure, m is the multiplicity factor and is unity for the Lα phase, and θ is an 

approximated Lorentz correction factor (see Section 3.2.1 for the derivation). The 

diffraction phases of the scattered X-rays (i.e., the signs of Ai in the centrosymmetric 

case, see Section 3.2.1 for the reasoning) could be determined by trial and error since 

the number of different combinations was only sixteen for four X-ray scattering peaks. 

In the case of the 32.9 wt% cardiolipin sample, where four scattering peaks could be 

resolved, only the diffraction phase of “+---“ led to reasonable electron profiles. It 

should be noted that Hz  values extracted from the electron density profiles 

reconstructed with four scattering peaks are consistently smaller than those from the 

reconstruction with three peaks resolvable and the fourth order peak missing (Figure 

4.3.7). Reconstruction with four scattering peaks is generally considered the minimum 

requirement for obtaining reliable structural information, as mentioned in Section 

4.3.2. It can be seen in Figure 4.3.7 that the three-peak reconstructed electron density 

profile exhibits more oscillations than the four-peak one does. These reflect the 

inaccuracy of three-peak reconstruction and are illustrated in Figure 4.3.8, in which 

fitting with different orders of sine functions to a square is compared. However, a 

consistent scaling factor of ~1.12 exists between Hz  values extracted from the four- 
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Figure 4.3.7. Electron density profile of a 32.9 wt% cardiolipin liquid crystal at 10 °C 

and 60 °C, reconstructed with the conventional peak integration method with four and 

three scattering peaks. 
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Figure 4.3.8. A square wave fitted with two or eight sine functions. The eighth order 

fit exhibits less noises and better represents the square wave.  
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peak and three-peak reconstructions. Surprisingly, this scaling factor happens to agree 

with the one between five- and three-peak reconstructions (with the (2,1) and (3,0) 

peak missing) for the POPE-water mixtures in the HII phase, reported in Rappolt et. al. 

(2003).  

Luzzati bilayer thicknesses and bilayer separations extracted from the electron 

density profile reconstruction with the peak integration method are shown in Table 

4.3.4 and Figure 4.3.9 for a 32.9 wt% cardiolipin liquid crystal as a function of 

temperature. Both of the parameters are in good agreement with those from the line 

shape fitting method. This validates application of the line fitting method to the data 

presented here and confirms the observation above of the structural parameters 

variations with temperature. The line shape fitting method was then employed with 

confidence to reconstruct the electron density profiles of the Lα phase for cardiolipin-

water mixtures in various lipid concentrations and temperatures. Figure 4.3.10 shows 

the extracted structural parameters of bilayer thickness (defined by Equation 4-2) and 

bilayer separation as a function of lipid fraction at chosen temperatures, corresponding 

to those in Figure 4.3.1. Values of those structural parameters can be found in Table 

4.3.5. It can be known from Figure 4.3.10 that the d-spacing variation of the Lα phase 

due to sample concentration changes (Figure 4.3.1) was primarily a result of the 

shrinkage in the inter-bilayer water volume, because the bilayer thickness was 

relatively stable across the entire concentration range. Interestingly, the bilayer 

thickness was larger at higher lipid fractions, with a 0.039-0.124 Å expansion per 

percentage of concentration change. These two observations are consistent with 

Luzzati and Husson (1962), in which both charged and neutral lipids were studied. 

The latter observation also supports our reasoning in Section 4.2 to explain why the 

main transition temperature increased with lipid concentration because larger bilayer 
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thickness is presumably correlated with tighter hydrocarbon chain packing. It should 

also be noted that the bilayer separation went into the negative regime as the lipid 

concentration increased beyond some point, around 72.5 wt% to 75.0 wt% depending 

on the sample temperature. This might indicate that water molecules in those cases 

were all buried among the cardiolipin headgroups. This speculation is supported by the 

fact that the bilayer separation values were more negative at higher temperatures as the 

lipid-water interface drove further into the headgroup region due to thermally induced 

expansion of the headgroup surface area. As a result, the charged headgroups of 

cardiolipin might have directly contacted with one another in these cases. This 

scenario should lead to high energy penalty and induce transformation of the Lα phase 

to the HII phase. Indeed, 72.9 wt% is the minimum concentration in which the Lα+HII 

coexistence was observed within the temperature range studied here.  
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Table 4.3.4. Amplitude iA  of Equation 4-14 and structural parameters obtained with 

the peak integration method for a 32.9 wt% cardiolipin liquid crystal in the Lα phase at 

temperatures from 5 °C to 60 °C. The amplitudes were derived from the integrated 

peak intensities through Equation 4-15 and normalized against the third order 

diffraction peak amplitude. T is in °C; d, LuzzatiBd ,  and LuzzatiSd ,  are in Å 

 
Amplitudes  

T d 
1 2 3 4  

LuzzatiBd ,
 

LuzzatiSd ,
 

5 125.6 0.16 0.91 1.0 0.55 40.6 85.0 

10 124.3 0.18 0.87 1.0 0.39 41.3 83.0 

15 123.1 0.22 0.89 1.0 0.51 40.0 83.1 

20 121.9 0.24 0.88 1.0 0.40 40.6 81.3 

25 120.8 0.27 0.84 1.0 0.46 39.36 81.5 

30 119.8 0.28 0.91 1.0 0.48 39.0 80.8 

35 118.8 0.29 0.90 1.0 0.45 39.0 79.8 

40 117.9 0.30 0.90 1.0 0.45 38.5 79.4 

45 117.0 0.32 0.91 1.0 0.47 38.2 78.8 

50 116.1 0.34 0.90 1.0 0.39 38.5 77.6 

55 115.2 0.35 0.92 1.0 0.46 37.7 77.5 

60 114.5 0.39 0.96 1.0 0.40 38.2 76.3 
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Figure 4.3.9. Comparison of the Luzzati bilayer thickness and separation of a 32.9 

wt% cardiolipin liquid crystal obtained with two different electron density profile 

reconstruction methods. Upward triangles and plus signs are Luzzati bilayer thickness 

obtained with the line shape fitting method and peak integration method, respectively; 

squares and crosses are the bilayer separation based on the Luzzati bilayer thickness 

correspondingly; circles are the d-spacing. Slopes for the Luzzati bilayer thickness and 

separation obtained with the peak integration method are also shown. 
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Figure 4.3.10. Bilayer thickness and separation of cardiolipin-water mixtures in the Lα 

phase as a function of lipid fraction at representative temperatures. Linear and power 

law fits were carried out for the bilayer thickness and separation, respectively. A black 

dashed line denotes the zero distance. The linear functions fitted to the thicknesses are 

y = ax+b with a = 5.751, b = 48.72 for 20 °C; a = 12.36, b = 44.68 for 40 °C; a = 

3.859, b = 47.32 for 60 °C; the power laws fitted to the separations are y = axb+c with 

a = 37.8, b = -1.043, c = -50.37 for 20 °C; a = 47.46, b = -0.9179, c = -63.6 for 40 °C; 

a = 37.04, b = -1.021, c = -49.66 for 60 °C. 
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Table 4.3.5. Structural parameters of cardiolipin liquid crystals, extracted from the 

electron density profiles reconstructed with the line shape fitting method. LC  is the 

lipid concentration; d is the d-spacing in Å; η is the dimensionless Caillé parameter 

(Equation 4-13); Bd  is the bilayer thickness in Å (Equation 4.2); Sd  is the bilayer 

separation in Å; HLuzzatiB zd 2, =  is the Luzzati bilayer thickness in Å; LuzzatiSd ,  is the 

bilayer separation based on the Luzzati bilayer thickness in Å. Refer to Figure 4.3.4 

for the definitions of Hz  and Hσ .  
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LC  d η Hz  Hσ  Bd  Sd  LuzzatiBd ,
 

LuzzatiSd ,
 

20 °C 

0.329 121.9 0.06982 20.2 3.0 52.5 69.4 40.5 81.4 

0.379 104.6 0.05926 19.1 3.0 50.1 54.5 38.1 66.5 

0.440 89.4 0.04730 19.9 3.0 51.8 37.6 39.7 49.7 

0.495 79.4 0.03495 19.6 3.0 51.1 28.3 39.1 40.3 

0.536 73.3 0.03836 18.4 3.0 48.8 24.6 36.6 36.6 

0.553 71.2 0.03433 19.7 3.0 51.3 19.8 39.3 31.9 

0.598 66.0 0.02517 20.3 3.1 53.1 12.9 40.7 25.3 

0.600 65.7 0.04114 19.5 3.0 50.9 14.7 38.9 26.7 

0.668 59.8 0.03423 20.8 3.1 54.0 5.8 41.7 18.1 

0.695 57.5 0.03784 20.5 3.0 52.9 4.5 40.9 16.5 

0.729 55.1 0.00491 21.7 3.1 55.5 -0.5 43.3 11.8 

0.782 52.1 0.03116 20.2 3.0 52.5 -0.4 40.5 11.6 

0.798 51.0 0.03096 20.5 3.0 53.1 -2.0 41.0 10.0 

0.799 51.6 0.00021 21.2 3.0 54.4 -2.8 42.4 9.2 

0.806 50.1 0.02028 19.9 3.0 51.6 -1.5 39.7 10.4 

40 °C 

0.329 117.9 0.06852 19.2 3.0 50.4 67.5 38.4 79.5 

0.379 101.2 0.06057 18.2 3.0 48.5 52.7 36.4 64.8 

0.440 86.9 0.05081 19.4 3.0 50.9 36.1 38.9 48.1 

0.495 77.2 0.03470 18.7 3.0 49.5 27.7 37.5 39.7 

0.536 71.1 0.03632 18.8 3.0 49.5 21.6 37.5 33.6 

0.553 69.2 0.04048 19.3 3.0 50.6 18.6 38.6 30.6 

0.598 64.5 0.02393 20.7 3.1 53.7 10.8 41.5 23.0 

0.695 56.0 0.03150 20.0 3.0 52.1 4.0 40.0 16.0 

0.729 53.7 0.00351 22.6 3.1 57.7 -3.9 45.2 8.5 

0.782 50.8 0.01931 20.0 3.1 52.5 -1.7 40.0 10.9 

60 °C 

0.329 114.5 0.07819 18.5 3.0 49.1 65.4 37.1 77.4 

0.495 75.1 0.03841 18.9 3.0 49.7 25.4 37.7 37.4 

0.536 69.3 0.04188 18.6 3.0 49.2 20.1 37.2 32.1 

0.553 67.2 0.04537 17.8 3.0 47.7 19.6 35.7 31.6 

0.695 54.7 0.04247 19.5 3.0 51.0 3.7 39.0 15.7 
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Electron density profiles for a gel phase were also reconstructed for cardiolipin-

water mixtures in selected concentrations at -20 °C (Table 4.3.6, Figure 4.3.11). 

Consistent with the observation in Figure 4.3.1, the bilayer separation of the gel phase 

was essentially unchanged when water content decreased. This fact supports our 

earlier claim that the gel phase was in the excess water condition even though water 

was limited to its liquid crystalline counterpart at higher temperatures. The bilayer 

separation of the gel phase was clearly shorter than 15 Å, whether the bilayer 

thickness defined with Equation 4-2 or the Luzzati bilayer thickness was considered. 

Remarkably, with the Equation 4-2 definition the bilayer separation was essentially 

zero for the cardiolipin sample in the gel phase at -20 °C, regardless of sample 

concentration. Contrary to the case of the Lα phase, in which some unstable lamellar 

structures converted to the hexagonal configurations, potential direct contact between 

the charged headgroups did not collapse the lamellar gel structure, indicating the 

presence of a force counteractive to the electrostatic interactions. As discussed in 

Section 2.2.2, the hydration force was observed to oscillate dramatically between 

being attractive and repulsive when the inter-surface distance was shorter than 15 Å 

(Israelachvili and Pashley, 1983). In close to zero inter-surface distances, otherwise 

repulsive hydration force was found to be attractive according to the above-cited 

reference. This "attractive" hydration force might account for the counterforce needed 

to compete with electrostatic interactions and stabilize cardiolipin in the lamellar gel 

structure. Nevertheless, this argument is speculative and based on a controversial 

experimental observation in Israelachvili and Pashley (1983). An alternative 

theoretical approach will be presented in the next section and its application to the gel 

phase will be discussed in the next chapter. It is also possible that inter-bilayer water 

was transferred to ice reservoirs in the sample (Gleeson et. al., 1994). WAXS on these 

samples could be used to detect ice.  
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Figure 4.3.11. Bilayer thickness and separation for cardiolipin-water mixtures in a gel 

phase at -20 °C as a function of lipid fraction. Linear fits (blue dashed lines) are to 

guide the eyes. A red dash-dotted line denotes the zero distance. 

 

Table 4.3.6. Structural parameters of cardiolipin-water mixtures at -20 °C and in the 

gel phase, extracted from the electron density profiles reconstructed with the line 

shape fitting method. LC  is in wt%; η is the dimensionless Caillé parameter; d, Hz , 

Hσ , Bd , Sd , LuzzatiBd ,  and LuzzatiSd ,  are in Å. Refer to the caption of Table4.3.5 for the 

definitions. 

 
LC  d η Hz  Hσ  Bd  Sd  LuzzatiBd ,

 
LuzzatiSd ,

 

59.8 58.8 1.945 23.3 2.9 58.3 0.4 46.6 12.2 

69.5 58.9 2.139 23.3 3.0 58.7 0.2 46.6 12.3 

79.9 58.4 1.683 24.0 3.0 59.9 -1.6 47.9 10.4 

83.0 58.5 1.767 23.6 3.0 59.4 -0.9 47.3 11.2 



162 

4.4 The Low Temperature Lamellar-Lamellar Phase Separation Region 

 

As the lipid concentration was within a certain range, from 55.3 wt% to 72.9 wt%, the 

cardiolipin-water mixtures were seen to undergo a phase separation leading to the 

lamellar-lamellar phase separation region at lower temperatures (the Lα1 + Lα2 region 

in Figure 4.2.1). To better understand the origin of the phase separation and the nature 

of the two coexisting phases, we reconstructed the electron density profiles of the two 

phases and studied their structural parameters. It is clear that very little information 

can be extracted from the very limited diffraction data that was observed. The spirit of 

this section is to see how far one can go in trying to extract any information at all. The 

resultant electron density profiles should be understood in this context. In other words, 

the form of the electron density profiles that are derived may not be really 

representative of the actual bilayer profile shape, but perhaps the rate of change of 

distance between the peaks in these profiles, for a given set of diffraction phases, 

might give some information about the changes in the water spacing or bilayer 

thickness. 

To employ the line shape fitting method outlined in Section 4.3.2 for electron 

density profile reconstruction, an azimuthally integrated X-ray scattering profile of 

two coexisting lamellar phases (Figure 4.4.1) must be deconvoluted into two separate 

scattering profiles for each of the phases. However, since reconstruction with the line 

shape fitting method relies heavily on the shape of an X-ray scattering profile, 

deconvolution, which inevitably leads to uncertainty in line shape (particularly in the 

diffuse scattering regime), will make unreliable the thereby obtained electron density 

profiles. Instead, we resorted to the conventional peak integration method to 

reconstruct electron density profiles of the two coexisting lamellar phases. While at 
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least four scattering peaks from samples in the Lα phase are required to obtain a 

reliable electron density profile reconstructed with this method, only three scattering 

peaks at most could be resolved unambiguously for each of the two coexisting phases. 

In many cases, only one scattering peak was seen. Bearing in mind the scaling factor 

existing between the Hz  values extracted from the four- and three-peak 

reconstructions (Section 4.3.3), X-ray scattering profiles with three scattering peaks 

resolvable for each of the two coexisting phases were chosen for electron density 

profile reconstruction. If the ~1.12 scaling factor applies in these cases, the structural 

parameters obtained with the three-peak reconstruction can still yield "accurate" 

values after scaled with that factor.  

 

 

Figure 4.4.1. Azimuthally integrated X-ray scattering profile of a 69.5 wt% 

cardiolipin-water mixture at -5 °C. Black arrows denote the 1st, 2nd and 4th order 

peaks of the Lα1 phase while the 1st, 2nd and 3rd order peaks of the Lα2 phase are 

indicated by red arrows. 
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Accordingly, the X-ray scattering profile of a 69.5 wt% cardiolipin-water mixture 

at -5 °C was chosen for electron density profile reconstruction (Figure 4.4.1). 

Amplitudes of Equation 4-14 for scattering peaks of the two coexisting phases were 

derived from the integrated peak intensities through Equation 4-15 and are shown in 

Table 4.4.1. Unlike the case of the 32.9 wt% cardiolipin-water mixture presented in 

Section 4.3.3, determining the diffraction phases of the two coexisting lamellar phases 

in 69.5 wt% was not straightforward. For the Lα1 phase (the one with the larger d-

spacing), both the diffraction phases of “--+” and “---“ could generate reasonable 

electron density profiles (Figure 4.4.2a) while the diffraction phase of “--+” was the 

only rational choice for the Lα2 phase although the resultant electron density profile 

was far from ideal (Figure 4.4.2b). To solve the diffraction phase problem, electron 

density profiles were also reconstructed for the Lα1 phase of 66.8 wt% and 59.8 wt% 

cardiolipin-water mixtures at -9 °C and -14 °C, respectively, and for the Lα2 phase of a 

72.9 wt% mixture at 0 °C (Table 4.4.1). As shown in Figure 4.4.3, when concentration 

and temperature changed, the peak, representing the phosphorous group, reconstructed 

for the Lα1 phase with the “---“ diffraction phase became more asymmetric (Figure 

4.4.3a) and deviated more from an ideal electron density profile of a lipid bilayer 

structure (Figure 4.3.4). On the other hand, symmetry of the peak reconstructed with 

the “--+” diffraction phase remained preserved, as well as the overall shape of the 

electron density profile (Figure 4.4.3b). This result made the diffraction phase of “--+” 

a preferred option for electron density profile reconstruction of the Lα1 phase. In the 

case of the Lα2 phase, electron density profile of a 72.9 wt% cardiolipin-water mixture, 

again with "--+" an only reasonable choice, exhibited a strong similarity with that of 

the 69.5 wt% sample, both in terms of the overall shape and peak position (Figure 

4.4.4). The similarity supported adoption of the "--+" diffraction phase and validated 

the resultant electron density profiles.  
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Table 4.4.1. Amplitude iA  of Equation 4-14 and structural parameters obtained with 

the peak integration method for the two coexisting lamellar phases of cardiolipin-

water mixtures in the lamellar-lamellar phase separation region. The amplitudes were 

derived from the integrated peak intensities through Equation 4-15 and normalized 

against the strongest amplitudes. LC  is in wt%; T is in °C; d, LuzzatiBd ,  and LuzzatiSd ,  are 

in Å. The values for LuzzatiBd ,  and LuzzatiSd ,  were extracted from the three-peak electron 

density profile reconstruction (see the text). 

 
Amplitudes  

LC  T d 
1 2 3 4  

LuzzatiBd ,
 

LuzzatiSd ,
 

The Lα1 phase 

       --+ --- --+ --- 

69.5 -5 76.8 0.82 1.00 - 0.17 41.5 48.0 35.3 28.8 

66.8 -9 72.8 1.00 0.98 - 0.25 39.4 48.9 33.4 23.9 

59.8 -14 77.6 0.80 1.00 - 0.28 41.1 51.2 36.4 26.3 

The Lα2 phase 

69.5 -5 55.7 1.00 0.16 0.14 - 42.9 12.8 

72.9 0 56.0 1.00 0.16 0.14 - 42.9 13.1 
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Figure 4.4.2. Electron density profiles of the Lα1 (a) and Lα2 (b) phases reconstructed 

with the peak integration method for a 69.5 wt% cardiolipin-water mixture at -5 °C. 

For the Lα1 phase, electron density profiles reconstructed with the "--+" and "---" 

diffraction phases are compared. 
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Figure 4.4.3. Comparison of the Lα1 electron density profiles based on the "---" 

diffraction phase (a) with those based on the "--+" diffraction phase (b) for three 

cardiolipin-water mixture samples at different temperatures. 
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Figure 4.4.4. Electron density profile of the Lα2 phase reconstructed for a 72.9 wt% 

cardiolipin-water mixture at 0 °C. 

 

To dispel any remaining uncertainty over the diffraction phases, we then turned to 

the structural parameters extracted from the electron density profiles. In the case of the 

Lα1 phase, solving for reasonable structural parameters values would also determine 

the correct diffraction phase because the Hz  values obtained with “--+” and “---“ 

diffraction phases are remarkably different. Since only three scattering peaks were 

resolved in the chosen datasets and minimally four scattering peaks were needed for 

obtaining a decent electron density profile, scaling the structural parameters obtained 

with the three-peak reconstruction might be necessary to generate accurate values. 

Thus, we closely examined data of the Lα phase electron density profile 

reconstructions at different temperatures reported in Harper et. al. (2001) and Rappolt 

et. al. (2003) to scrutinize applicability of the ~1.12 scaling factor observed in Section 
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4.3.3. In this analysis, selected datasets in the above-cited references and in this thesis 

study, where four scattering peaks were resolvable, were processed with one of the 

scattering peaks excluded each time. The resultant Hz  values were compared with 

those based on the same datasets with all four scattering peaks included. As shown in 

Table 4.4.2, the scaling factors clearly vary with lipid identities and, within an 

individual dataset, even with which of the scattering peaks was omitted. In other 

words, the scaling factor is not independent of lipid type, liquid crystalline phase and 

the excluded scattering peak although the scaling factors are more or less uncorrelated 

with a single experimental variable (here, the temperature) for given lipids types and 

excluded scattering peaks. Therefore, a scaling factor is unique to a given dataset and 

can only be applied when an initially resolved scattering peak becomes unobservable 

due to, say, stronger thermal motions at high temperatures. For example, the 4th order 

peak of the POPE-water mixture in Rappolt et. al. (2003) became unobservable when 

temperature elevated to 75 °C. Based on the scaling factor obtained with our analysis 

(Table 4.4.2), the Hz  value at that temperature could still have been determined within 

experimental error even when the 4th order peak was missing. This feature will also be 

of use when the intensity of a scattering peak cannot be evaluated unambiguously. 

However, the datasets on lamellar-lamellar phase separation yielded no X-ray 

scattering profile with four resolvable peaks for either of the two coexisting phases at 

any lipid concentration and temperature. Absence of scattering peaks at sub-freezing 

temperatures is not likely to be due to thermal motions. It might therefore be 

reasonable to claim that intensities of the 3rd and 4th order peaks were intrinsically 

marginal for the Lα1 and Lα2 phases, respectively. We also realized from Table 4.4.2 

that when the intensity of a scattering peak is relatively small, omission of that peak 

does not lead to substantial difference in the Hz  value. Based on these two reasons, we 
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adopted the Hz  values extracted from three-peak reconstructions for both of the 

coexisting phases without applying any scaling factor. The results are shown in Table 

4.4.1. Readers are cautioned that the resultant Hz  values might not be as accurate as 

those obtained with four-peak reconstruction but should still bear some precision.  

 

 

Table 4.4.2. Ratios (i.e., scaling factors) of the Hz  values extracted from the electron 

density profile reconstruction with the 1st (1), 2nd (2), 3rd (3) and 4th (4) order peaks 

individually excluded to those with all four peaks included. Exclusion of the strongest 

scattering peaks was not shown because this produced no reasonable electron density 

profile. The amplitudes for scattering peaks of each dataset are shown to elucidate 

their correlation with the scaling factors (see text). 

 
Ratio to no exclusion  Amplitudes Lipid/ 

Temperature 1 2 3 4  1 2 3 4 

Cardiolipin          

10 °C 1.01 0.89 - 1.13  0.18 0.87 1.00 0.39 

60 °C 1.02 0.88 - 1.11  0.39 0.96 1.00 0.40 

18:1c∆9-PE*          

-4 °C - 1.01 1.04 1.02  1.00 0.09 0.20 0.30 

4 °C - 1.01 1.04 1.01  1.00 0.09 0.21 0.29 

21:0ch-PE*          

55 °C - 0.98 1.04 1.11  1.00 0.16 0.24 0.38 

80 °C - 0.98 1.04 1.21  1.00 0.16 0.19 0.33 

POPE**          

30 °C - 1.02 1.04 0.99  1.00 0.13 0.24 0.34 

54 °C - 1.02 1.04 0.98  1.00 0.17 0.25 0.31 

74 °C - 1.02 1.03 1.00  1.00 0.13 0.22 0.35 

* data from Harper et. al., 2001.  

** data from Rappolt et. al., 2003. 



171 

Electron density profile reconstructions carried out for 69.5 wt% and 72.9 wt% 

cardiolipin-water mixtures at -5 °C and 0 °C, respectively, yielded essentially identical 

Luzzati bilayer thickness, 42.9 Å, for the Lα2 phase (Table 4.4.1). This observation is 

consistent with the -10 °C curve of Figure 4.3.1a, in which d-spacing of the Lα2 phase 

stayed constant regardless of lipid concentration. For the Lα1 phase, close examination 

on the data shows that the Luzzati bilayer thickness based on the "--+" diffraction 

phase, 40.7±1.1 Å, appears to be more consistent with those presented in Section 4.3.3 

than that based on the "---" diffraction phase, which is 49.4±1.6 Å. Also, Luzzati 

bilayer thickness of the Lα1 phase obtained with "--+" is thinner than that of the Lα2 

phase. This result agrees with the trend seen in Figure 4.3.10, in which the bilayer 

thickness increases with decreasing water content (recall that Lα1 phase exhibits larger 

d-spacings presumably due to higher water contents). To further support adoption of 

the "--+" diffraction phase for the Lα1 phase and confirm "correctness" of the electron 

density profiles for the Lα2 phase, reconstruction with the line shape fitting method 

was also carried out for samples in the Lα phase with experimental conditions close to 

the phase separation region. As shown in Figure 4.4.5, immediately before the 

transition to the phase separation region, the d-spacing of the Lα phase is close to that 

of the Lα1 phase in 59.8 wt% and to that of the Lα2 phase in 69.5 wt% as d-spacing of 

the Lα phase shifts with lipid concentration. This similarity in the d-spacing may imply 

similarity in structure. Therefore, X-ray scattering profiles of 59.8 wt% and 69.5 wt% 

cardiolipin samples in the Lα phase and at -9 °C and at 0 °C respectively were 

employed for electron density profile reconstruction with the line shape fitting 

method. The extracted Luzzati bilayer thickness is 40.58 Å for 59.8 wt% and 42.58 Å 

for 69.5 wt%, corresponding to the Lα1 and Lα2 phases respectively. All the results 

presented above support adoption of the "--+" diffraction phase for the Lα1 phase and 

reliability of the extracted structural parameters for the both phases.  
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Figure 4.4.5. d-spacing of the lamellar phases as a function of temperature for 59.8 

wt% (a) and 69.5 wt% (b) cardiolipin-water mixtures. 
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The data presented in Table 4.4.1 indicates that the observed remarkable difference 

in d-spacings within the lamellar-lamellar phase separation region is mainly the result 

of differential water distribution between the two coexisting phases, because the 

difference in water layer thickness (35.0±1.5 Å for the Lα1 phase versus 13.0±0.2 Å 

for Lα2 phase) is considerably larger than that in bilayer thickness (40.7±1.1 Å for the 

Lα1 phase versus 42.9 Å for the Lα2 phase). This lamellar-lamellar phase separation 

phenomenon is not unique to cardiolipin-water mixtures. It was also observed in 

another charged lipid system, surfactant didodecyldimethylammonium bromide or 

DDABr (Dubois et. al., 1993), and even in neural lipid systems, phospholipids PCs, 

when alkali ions were added to the latter (Rappolt et. al., 2001; Rappolt et. al., 1998). 

To our best knowledge, however, the data presented here appear to be one of few, if 

not the only, observations in which a one-component charged phospholipid system 

displays lamellar-lamellar phase separation.  

The above-cited studies evoked two different mechanisms to explain a 

superficially identical phenomenon. In the case of neutral lipids, osmotically driven 

ion gradients across multilayer structures were suggested to account for the phase 

separation (Rappolt et. al., 2001) because ions are known to condense neural lipids 

(Inoko et. al., 1975; Lis et. al., 1981). On the other hand, a mechanism involving 

counterion mediated electrostatic “attraction” was proposed for the case of DDABr 

(Jho et. al., 2010; Boroudjerdi et. al., 2005; Netz, 2001). A parameter, the coupling 

parameter Ξ , was derived to distinguish two types of counterion distributions and 

correspondingly attractive/repulsive interactions between two charged surfaces,   

 

2

3

T
z σ

≈Ξ , (4-16) 
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where z  is counterion valence, σ  is surface charge density and T is temperature. Note 

that Ξ  is greater at higher counterion valences and lower temperatures. In the limit of 

1>>Ξ , counterions are distributed as a flat, 2-D layer near a charged surface and are 

highly correlated (Figure 4.4.6). This type of counterion distribution results in net 

attraction between two charged surfaces and in the coexisting lamellar phase with a 

shorter inter-lamellar distance because repulsion between surfaces is compensated by 

attraction among surfaces and counterions. On the other hand, the net force between 

charged surfaces is repulsive and can be described by the Poisson-Boltzmann theory 

when 1≈Ξ . This may be the case for the coexisting lamellar phase with a longer 

inter-lamellar distance. For our cardiolipin system, readers are reminded that even 

though "pure" water was used for the sample preparation, the cardiolipin-water system 

employed in this thesis study was never free of counterions (cardiolipin was a sodium 

salt as purchased) because of the need to fulfill electric neutrality. Therefore, the 

above-mentioned counterion-mediated attraction may apply in our system as well. 

Moreover, it was known that phase separation only occurred at lower temperatures and 

the relative amount of Lα2 phase increased with decreasing temperature (e.g., Figure 

4.4.7). These two observations may be connected to the inverse quadratic relation of 

Ξ  with temperature and further strengthen the explanation with this strong coupling 

approach. The fact that phase separation was observed only in a specific range of 

sample concentration may pose an unanswered question to this theoretical approach. 

Also, based on this approach, phase separation may have occurred at higher 

temperatures if the purchased cardiolipin was a calcium salt. An approach will be 

provided in the next chapter in an attempt to explain the former while still more 

experiments are needed to address the later and other potential questions.  
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(a)                                                                   (b) 

 

 

Figure 4.4.6. Snapshots of a Monte-Carlo simulation for counterion (green spheres) 

distributions near a charged surface when 1=Ξ  (a) and 1>>Ξ (b). The figure is from 

Boroudjerdi et. al., 2005.  
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Figure 4.4.7. Fraction of the Lα2 phase in the total lamellar phases as a function of 

temperature for a 59.8 wt% cardiolipin-water mixture. The values were obtained by 

calculating integrated intensities of the first order peaks of the Lα1 and Lα2 phases.  

 



176 

As mentioned in Section 1.2, the physical phenomenon underlying the lipid raft 

model, liquid-liquid phase separation, bears a strong similarity to the phase separation 

observed here: both involve the coexistence of two liquid crystalline lamellar phases. 

However, our WAXS data could not differentiate the diffuse scattering from the Lo (as 

lipids rafts) phase and from the Ld (or Lα as the bulk lipid matrix) phase as having 

been carried out in Mills et. al. (2008a). Following the experimental protocol by Mills 

et. al. (2008b) may clarify whether the Lα1 and Lα2 phases observed in our cardiolipin 

system were actually the Lo and Ld phases speculated for the lipid raft model.  

 

4.5 The Tiny Crystals-Cluster Phase at High Lipid Concentrations 

 

In addition to the lamellar-lamellar phase separation region, another peculiar 

phenomenon observed in phase behavior of cardiolipin-water mixtures was emergence 

of a structure at high lipid concentrations (> ~85 wt%), which exhibited X-ray 

diffraction pattern consistent with clusters of tiny crystals. As shown in Figure 4.2.6, 

diffraction images collected from samples at this phase region displayed regular 

powder diffraction rings but peppered with discrete Bragg spots typical of structures 

with long-range periodicity, such as larger single crystals. This feature appeared to 

point out presence of polycrystalline structures with periodic domains larger than 

those usually seen in the lipid liquid crystal dispersions. However, absence of ordered 

structures within hydrocarbon chain region, as demonstrated by the WAXS data 

shown in Figure 4.5.1, indicates that the cardiolipin molecules were still in the liquid 

crystalline state even though they scattered crystalline-like X-ray diffraction patterns.   

To explore the nature of this phase, we investigated whether the structure was in a 

stable equilibrium state or only a transitory one between two stable phases. For this  



177 

 
Figure 4.5.1. X-ray diffraction image of a ~87 wt% cardiolipin-water mixture in the 

8th hour incubation at 35 °C. The WAXS regime covers a reciprocal space up to |Q| = 

1.55 Å-1. Red arcs mark |Q| = ~1.45 Å-1. Compared to Figure 4.2.5a, which shows a 

sharp peak at 1.45 Å-1, the current data only display a diffuse scattering peak in the 

corresponding region. Absence of a sharp peak in the WAXS regime suggests that this 

cardiolipin-water mixture was in the liquid crystalline state. 

 

purpose, cardiolipin-water mixtures in appropriate concentrations were incubated at 

30-40 °C and illuminated with X-rays in specific time intervals to record temporal 

evolution of the diffraction patterns. Initially, the Bragg spots were sparse and barely 

recognizable (Figure 4.5.2a). Powder diffraction rings still dominated the diffraction 

pattern. The Bragg diffraction spots were observed to multiply and enlarge gradually, 
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(a)                                                                     (b) 

 

(c)                                                                      (d) 

 

 
Figure 4.5.2. X-ray diffraction images of a ~86.6 wt% cardiolipin-water mixture 

incubated at 40 °C for 0 hr (a), 4hr (b), 14 hr (c) and 22 hr (d). See the text for the 

discussion on temporal evolution of the diffraction patterns.  
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Figure 4.5.3. Peak position of each scattering peak by a ~86.6 wt% cardiolipin-water 

mixture as a function of incubation time at 40 °C. Peaks speculated to belong to the 

same family are grouped with the same color. A dashed line marks when the Bragg 

spots were completely undetectable. 

 

indicating continuous growth of the tiny crystal-like domains during the incubation 

(Figure 4.5.2b). Surprisingly, after reaching the maximum in sharpness and 

discreteness, the Bragg spots became smeared and started to shrink after several hours 

of incubation (Figure 4.5.2c). The Bragg spots eventually disappeared altogether when 

the diffraction patterns returned to smooth powder diffraction rings again (Figure 

4.5.2d). These diffraction peaks were spaced differentially from those observed in the 

beginning of the incubation and indexed as arising from the coexisting Lα and HII 

phases. Figure 4.5.3 summarized temporal evolution of all the peaks scattered by a 

~86.6 wt% cardiolipin-water mixtures. A question was prompted upon this 

unexpectedobservation of crystalline-like diffraction → powder diffraction transition:  
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(a) 

(b) 

(c) 

 
Figure 4.5.4. Thin-layer chromatography results for ~87 wt% cardiolipin-water 

mixtures in the different stages of incubation at 30 °C or 35 °C: (a) before incubation; 

(b) immediately after emergence of the crystalline-like diffraction pattern (incubation 

at 30 °C for 1.5 hrs); (c) after reemergence of the powder diffraction pattern 

(incubation at 35 °C for 18 hrs). Each row is different in the size of a sample drop 

used for the chromatography; 1.5 µl, 2.5 µl and 3 µl from top to bottom. (a) and (b) 

exhibit essentially identical patterns while in (c) the minor spots, presumably arising 

from the degraded cardiolipin molecules, are clearly observed. 
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Was this transition the result of a slow phase transition requiring a prolonged 

incubation at relatively higher temperatures or was it merely a product of thermal 

degradation (Section 3.4 details the concern over thermal degradation)? To answer this 

question, we carried out thin-layer chromatography for the crystalline-like samples at 

different stages of the incubation: before incubation, immediately after appearance of 

the crystalline-like diffraction pattern, and after the reemergence of the powder 

diffraction pattern. From the chromatography results shown in Figure 4.5.4, it is clear 

that forming and growing of the tiny crystal-like domains was not caused by thermal 

degradation. However, the results suggest that lipid thermal degradation was 

responsible for disappearance of tiny crystal-like domains and the return to powder 

diffraction patterns, even though it was not a complete breakdown as shown in Figure 

3.4.1. Hence, the reemergence of powder diffraction patterns was considered as an 

artifact and will not be further discussed below.  

From temporal evolution of the X-ray diffraction patterns demonstrated above, it 

was realized that the tiny-crystals cluster-like structure was apparently a stable phase 

at high lipid concentrations and merited further efforts to explore its structure. 

Therefore, we proceeded to index the X-ray scattering peaks of this structure, 

excluding the coexisting Lα or HII phase, to determine the symmetry of its unit cell. 

Here, diffraction pattern of an 86.6 wt% cardiolipin-water mixture in the 5th hour of 

its incubation at 40 °C was taken to conduct the indexing process. Software packages 

from the CCP14 (Collaborative Computational Project Number 14 in Powder and 

Small Molecule Single Crystal Diffraction) collaboration, the Crysfire suite (Shirley, 

1980) and Checkcell of the LMGP Suite (Laugier and Bochu), are the programs widely 

used to index powder diffraction peaks of small molecules and were employed here to 

index the scattering peaks from the cardiolipin liquid crystals. The Crysfire suite runs 
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three automatic indexing programs, Taup (Taupin, 1968), Dicvol91 (Louer and Louer, 

1972; Boultif and Louer, 1991) and Treor90 (Werner et. al., 1985), against the input 

scattering peak positions of the cardiolipin sample to suggest the most likely unit cell 

symmetries along with the unit cell dimensions. Summary of the obtained unit cell 

suggestions and the raw scattering profile are then loaded into Checkcell to optimize 

the result. The program automatically goes through all the potential unit cell 

symmetries and dimensions against the experimental scattering profile to offer the best 

solutions.  

A literature dataset reported in Shearman et. al. (2009) was first used to verify this 

indexing approach. Following the process described above, Crysfire and Checkcell 

generated a list of "estimated best solutions" to unit cell of the input X-ray scattering 

peaks (Table 4.5.1). Note the solutions in this list were not ordered by their suitability 

to data. The reported space group, P63/mmc, and unit cell dimension, a = b = 71.5 Å, c 

= 116.5 Å, α = β = 90°, γ = 120° for this dataset were in the estimated best solution 

list. Close examination might lead to the unit cell choice as reported. Combining use 

of these two programs would at least determine the "correct" Bravais lattice and unit 

cell dimension with sufficient precision for a given set of X-ray scattering peaks if one 

relied only on the "estimated best solutions" without manually checking each solution 

within. We then applied the indexing approach to our data. The preliminary unit cell 

suggestions by Crysfire are listed in Table 4.5.2. Based on these suggestions, a list of 

the estimated best solutions was produced by Checkcell (Table 4.5.3). The observed 

X-ray scattering profile superimposed on one of the solutions is presented in Figure 

4.5.5. Careful examination to each solution concluded that the most likely unit cell 

symmetry and dimension were tetragonal with the space group of P4 in the dimension 

of a = b = 37.04 Å, c = 58.124 Å; α = β = γ = 90°. Table 4.5.4 compares observed and 
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calculated positions of the scattering peaks, based on the obtained unit cell. However, 

it should be noted that many diffraction orders are not seen, which makes the 

assignment questionable.  

With 3-D periodicity and the low water contents, cardiolipin molecules in this tiny 

crystals cluster-like phase are speculated to arrange in inverted micellar structures, 

with water burying inside, within a tetragonal unit cell. This spatial arrangement may 

be similar to that of the Fd3m cubic micellar phase demonstrated in Figure 1.3.5 or of 

the P63/mmc hexagonal micellar phase reported in Shearman et. al. (2009). If valid, 

this tetragonal micellar phase would be a new inverted micellar phase, not observed 

before for phospholipids, even though a micelle-like structure with a close space 

group, P42/mmm, has been reported for dendrimers (Ungar et. al., 2003). Nevertheless, 

with the number of scattering peaks observed here, we cannot make the claim with 

confidence. Furthermore, even if the speculation is proven true, it is still unclear why 

the cardiolipin-water mixtures would form domains larger than those usually observed 

in lipid liquid crystals. Particularly, formation of these domains prefers higher 

temperatures rather than lower temperatures, an apparent contradiction to conventional 

wisdom.  
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Table 4.5.1. Estimated best solutions suggested by Checkcell under the constraint of 

0.03° angular tolerance for 2θ between the observed and calculated reflections for the 

hexagonal inverted micellar phase of a DOPC/DPG/Cholesterol mixture reported in 

Shearman et. al. (2009). Fourteen peaks were observed in this dataset. Molecular 

volumes are in Å3; Lengths are in Å. The reported space group of P63/mmc and unit 

cell dimension, a = b = 71.5 Å, c = 116.5 Å, α = β = 90°, γ = 120°, are in the list 

 

 
FOM a b c α β γ Vol. Syst. Sp. Group 

18.3 71.638 71.638 116.424 90 90 120 517436 HEXA P63MC 

18.3 71.638 71.638 116.424 90 90 120 517436 HEXA P-62C 

18.3 71.638 71.638 116.424 90 90 120 517436 HEXA P63/MMC 

18.3 71.638 71.638 116.424 90 90 120 517436 HEXA P3C1 

18.3 71.638 71.638 116.424 90 90 120 517436 HEXA P-31C 

18.2 71.589 71.589 116.435 90 90 120 516778 HEXA P63MC 

18.2 71.589 71.589 116.435 90 90 120 516778 HEXA P-62C 

18.2 71.589 71.589 116.435 90 90 120 516778 HEXA P63/MMC 

18.2 71.589 71.589 116.435 90 90 120 516778 HEXA P3C1 

18.2 71.589 71.589 116.435 90 90 120 516778 HEXA P-31C 

14.5 71.468 71.468 116.553 90 90 120 515556 HEXA P63MC 

14.5 71.468 71.468 116.553 90 90 120 515556 HEXA P-62C 

14.5 71.468 71.468 116.553 90 90 120 515556 HEXA P63/MMC 

14.5 71.468 71.468 116.553 90 90 120 515556 HEXA P3C1 

14.5 71.468 71.468 116.553 90 90 120 515556 HEXA P-31C 

13.6 71.595 71.595 116.296 90 90 120 516253 HEXA P63MC 

13.6 71.595 71.595 116.296 90 90 120 516253 HEXA P-62C 

13.6 71.595 71.595 116.296 90 90 120 516253 HEXA P63/MMC 

13.6 71.595 71.595 116.296 90 90 120 516253 HEXA P3C1 

13.6 71.595 71.595 116.296 90 90 120 516253 HEXA P-31C 

7.79 71.516 71.516 116.596 90 90 120 516441 HEXA P63MC 

7.79 71.516 71.516 116.596 90 90 120 516441 HEXA P-62C 

7.79 71.516 71.516 116.596 90 90 120 516441 HEXA P63/MMC 

7.79 71.516 71.516 116.596 90 90 120 516441 HEXA P3C1 

7.79 71.516 71.516 116.596 90 90 120 516441 HEXA P-31C 
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Table 4.5.2. Preliminary unit cell suggestions by the Crysfire suite for a ~86.6 wt% 

cardiolipin-water mixture in the 5th hour of incubation at 40 °C. The most likely unit 

cell symmetries and cell dimensions are listed. Volumes are in Å3; Lengths are in Å. 

 
Merit Pedig Volume a b c α β γ 

25.57 Tet__3 79744.54 37.0401 37.0401 58.1243 90 90 90 

23.69 Ort__2 56555.86 26.1729 37.2102 58.0716 90 90 90 

21.47 Ort__3 63355.5 29.3197 37.2102 58.0715 90 90 90 

19.79 Ort__1 63371.56 29.2846 37.2653 58.0699 90 90 90 

19.6 Tet__5 79871.91 37.059 37.059 58.1576 90 90 90 

17.8 Mon_26 56653.47 37.057 58.252 26.249 90 88.993 90 

15.3 Mon__4 57019.97 37.297 58.252 26.246 90 89.444 90 

15.3 Mon_28 57019.97 37.297 58.252 26.246 90 90.556 90 

15.3 Mon_27 57019.97 37.297 58.252 26.246 90 89.444 90 

15.3 Mon_12 57019.97 37.297 58.252 26.246 90 89.444 90 

15.3 Mon_11 57019.97 37.297 58.252 26.246 90 89.444 90 

15.3 Ort__1 56644.88 58.2522 37.0509 26.2452 90 90 90 

14.45 Ort__4 75261.67 26.2902 49.1083 58.2941 90 90 90 

14.3 Mon__9 56998.45 37.269 58.173 26.294 90 89.028 90 

14.3 Mon__2 56998.45 37.269 58.173 26.294 90 89.028 90 

14.3 Mon_25 56998.45 37.269 58.173 26.294 90 89.028 90 

14.3 Mon_10 56998.45 37.269 58.173 26.294 90 89.028 90 

10.3 Mon_23 56283.66 37.125 58.031 26.125 90 90.039 90 

10.17 Tet__1 125716 58.2687 58.2687 37.0272 90 90 90 

8.7 Mon_24 56287.25 37.127 58.031 26.127 90 90.664 90 

8.5 Mon_14 57032.2 37.304 58.252 26.252 90 88.72 90 

8.5 Mon_13 57032.2 37.304 58.252 26.252 90 88.72 90 

7.99 Tet__2 162815.6 58.2687 58.2687 47.9541 90 90 90 

7.9 Mon_15 55893.14 37.134 58.031 25.944 90 91.289 90 

7.6 Tet__3 338080.1 25.3989 25.3989 524.0704 90 90 90 

7.6 Tet__2 338080.1 25.3989 25.3989 524.0704 90 90 90 

7.6 Tet__1 338080.1 25.3989 25.3989 524.0704 90 90 90 

7.09 Ort_23 36903.89 12.3413 26.1146 114.506 90 90 90 

6.9 Mon_16 56180.68 37.146 58.031 26.077 90 91.914 90 
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Table 4.5.3. Estimated best solutions suggested by Checkcell under the constraint of 

0.03° angular tolerance for a ~86.6 wt% cardiolipin-water mixture in the 5th hour of 

incubation at 40 °C. Volumes are in Å3; lengths are in Å. 

 

 

Table 4.5.4. Indexing of X-ray scattering peaks from a ~86.6 wt% cardiolipin-water 

mixture in the 5th hour of incubation at 40 °C. See also Figure 4.5.5. obsd  and calcd  

are the observed and calculated peak positions, respectively. 

FOM a b c α β γ Vol. Syst. Sp. Group 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P4 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P-4 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P4/M 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P422 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P4MM 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P-42M 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P-4M2 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P-42M 

25.57 37.04 37.04 58.124 90 90 90 79745 TETR P4/MMM 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P4 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P-4 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P4/M 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P422 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P4MM 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P-42M 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P-4M2 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P-42M 

19.6 37.059 37.059 58.158 90 90 90 79872 TETR P4/MMM 

Index obsd  
calcd  

001 58.80 58.14 

010 37.29 37.04 

002 29.06 29.06 

110 26.24 26.19 

103 17.16 17.17 

030 12.34 12.35 
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Figure 4.5.5. X-ray scattering profile of a ~86.6 wt% cardiolipin-water mixture in the 

5th hour of its incubation at 40 °C, along with the calculated scattering peak positions 

based on the tetragonal symmetry with the space group of P4. Blue lines on the left 

and right panels indicate positions of the observed and calculated reflections 

respectively while green lines designate the calculated reflections that were 

experimentally undetectable. Arrows mark the reflections from the coexisting Lα 

phase. Miller index of each reflection is also shown. See also table 4.5.3. 
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4.6 Effects of Alkane Presence on the Cardiolipin Phase Behavior  

 

Given the unique quadruple-hydrocarbon chain configuration of cardiolipin, a natural 

question raised is whether the extra hydrocarbon chains have any effect on the 

hydrocarbon chain packing frustration energy (see Section 2.2.3). To find out the 

answer, we followed the experimental method described in Kirk and Gruner (1985) 

and studied how releasing the packing constraint by adding alkane affected phase 

behavior of the cardiolipin-water mixtures. This experiment may also shed light on 

how the packing energy and electrostatic interactions among the charged headgroups 

interact with each other to determine the spatial arrangements of cardiolipin liquid 

crystals.  

In this experiment, dodecane in 5-10 wt% of the total organic contents was mixed 

with cardiolipin-water mixtures. The presence of dodecane was found to significantly 

change phase behavior of the cardiolipin-mixtures when compared to those without 

dodecane. In the cardiolipin concentration of ~79 wt%, the Lα↔Lα+HII phase 

transition temperature was dramatically reduced from the previous value of 40 °C 

down to 5 °C in the presence of dodecane (Figure 4.6.1a). In the case of ~70 wt% 

cardiolipin-water mixtures, adding alkane even resulted in formation of the Lα+HII 

coexistence phase, which was otherwise unobservable within the temperature range 

studied here (Figure 4.6.1b). Meanwhile, the lower cardiolipin concentration boundary 

of the Lα+HII phase coexistence region was extended at least to ~49.8 wt% by adding 

dodecane, from the initial ~72.9 wt% when dodecane were not present (Figure 4.6.2). 

Except for favoring formation of the HII phase, addition of dodecane exerted no 

detectable effects on phase behavior of the cardiolipin-water mixtures, at least in the 

two concentrations, ~79 wt% and ~70 wt%, shown above. Both phase boundaries and 
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unit cell dimensions of each self-assembled structure were unchanged, including those 

for the lamellar-lamellar phase separation and Lα-gel coexistence regions. The former 

may indicate that the phase separation is unrelated to hydrocarbon chain packing strain 

and is solely the consequence of electrostatic interactions, consistent with the 

conclusion drawn in Jho et. al. (2010).  

Even with dodecane, the HII phase still never appeared alone. Therefore, although 

relaxing hydrocarbon chain packing strain did energetically favor the HII phase, 

electrostatic interactions among the headgroups might remain dominating and forced 

cardiolipin to adopt bilayer structures. A deeper discussion regarding interactions 

among elastic energies, hydrocarbon chain packing strain and electrostatic forces will 

be presented in Chapter 5 to understand the Lα↔Lα+HII phase in an energetic view. 
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 4.6.1. Unit cell dimension as a function of temperature for ~79 wt% (a) and 

~70 wt% (b) cardiolipin-water mixtures with (red color symbols) and without (green 

color symbols) addition of dodecane. Diamonds are the HII phase; Upward triangles 

are the Lα phase; circles are the gel phase. 
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Figure 4.6.2. Azimuthally integrated scattering profiles and X-ray scattering images 

(inset) of ~49 wt% cardiolipin-water mixtures without (a) and with (b) presence of 

dodecane. Black and red lines denote the reflections from the Lα and HII phases, 

respectively. Even at 60 °C, the sample without dodecane was still unable to assume 

the HII phase while 20 °C was sufficient for the sample with dodecane to form the HII 

phase. 
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4.7 Summary 

 

In this chapter, we saw cardiolipin phase behavior mapped out in temperatures from    

-20 °C to 60 °C and in lipid concentrations from 32.9 wt% to 85.4 wt%. We then tried 

to understand the phase behavior in terms of spatial arrangements of the phases. To 

carry out the structural study, the line-shape fitting method was employed to 

reconstruct electron density maps from the X-ray scattering data that would otherwise 

generate no structural information except the repeat distances. This reconstruction 

method attempted to utilize every bit of information contained in the X-ray scattering 

data, including shapes, positions and amplitudes of Bragg peaks and diffuse scattering. 

Electron density map reconstruction was also carried out with the conventional peak 

integration method for the few suitable data to validate the structural information 

obtained with the line-shape fitting method. The structural parameters obtained with 

the two methods matched well, confirming applicability of the line-shape fitting 

method. 

From the structural information obtained with electron density map reconstruction, 

both bilayer thickness and bilayer separation were seen to decrease with increasing 

temperature. The former was attributed to stronger thermal motions of hydrocarbon 

chains at higher temperatures while the latter was explained as the result of an ever 

expanding headgroup surface area. Remarkably, the bilayer separation was observed 

to shrink faster than neutral lipids. This was speculatively attributed to the unique 

quadruple-hydrocarbon configuration and headgroup charges of cardiolipin. In the 

context of concentration variation, decrease in the bilayer separation was the main 

factor contributing to the decrease in d-spacing when sample concentration increased. 

Thickness of the water layer was even down to negative values when specific lipid 
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concentration and temperature were reached. Combining the observations in 

temperature and concentration variations, it was speculated that direct contacts of the 

charged headgroups, accompanying zero or negative bilayer separation, were 

energetically costly and led to collapse of the Lα phase in the high temperature and 

concentration limit. Moreover, electron density profile reconstruction carried out for 

the gel phase confirmed the excess water condition of the structure, even with 

repulsive electrostatic interactions present. Hydration “attraction” was invoked to 

explain the contradictory observation even though the hypothesis itself is 

controversial.  

Electron density profiles were also reconstructed with the peak integration method 

for the two coexisting phases in the lamellar-lamellar phase separation region. Efforts 

were used to assure that reconstruction with three scattering peaks, falling short of 

four peaks minimally required for decent accuracy, still produce structural information 

with decent precision. The structural parameters showed that the two lamellar phases 

were in very different hydration levels. The strong-coupling approach was suggested 

to qualitatively explain the phenomenon. In studying another peculiar feature of the 

cardiolipin phase behavior, we indexed scattering peaks from the tiny crystal cluster-

like phase and were led to a tetragonal unit cell with the space group of P4. 

Cardiolipin molecules were speculated to arrange in inverted micellar structures with 

3-D periodicity. However, our data could not confirm the speculation with confidence. 

Finally, cardiolipin-dodecane-water mixtures in various cardiolipin concentrations 

were studied to elucidate the influence of hydrocarbon chain packing strain on a lipid 

with a quadruple-chain configuration. We saw formation of the HII phase in an 

otherwise pure Lα phase region, indicating the importance of chain packing strain even 
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in the presence of surface charges. Implication of these experimental results will be 

further discussed in an energetic view in the next chapter.  
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CHAPTER 5 

DISCUSSIONS AND CONCLUDING REMARKS 

5.1 Energetics Overview 

5.1.1 Structure Map 

 

Presumably due to charged headgroups, the Lα phase is the dominant spatial 

configuration in cardiolipin-water mixtures when counterions and alkane are absent 

(Figure 4.2.1). However, in the temperature (-20 °C to 60 °C) and concentration (32.9 

wt% to 85.4 wt%) ranges studied here five major phase transitions were still observed 

for the Lα phase: (1) Lα↔ gel+water; (2) Lα↔ Lα1+ Lα2; (3) Lα↔ Lα+HII; (4) Lα↔ 

Lα+gel; (5) Lα↔ Lα+TC. In concluding this thesis study, we will plot a “structure 

map” underlying these phase transitions in an effort to deduce an energetic overview 

to the cardiolipin phase behavior.  

In Sections 4.3 and 4.4, we reconstructed electron density profiles for cardiolipin-

water mixtures to extract the structural parameters. By examining the structural data 

presented in those two sections, one may uncover some relationships existing between 

the phase transitions (2)-(5) and the inter-bilayer distance Sd  (following the definition 

in Equations 4-2 and 4-3). These relationships may be illustrated and summarized with 

a "structure map" as shown in Figure 5.1.1. In this structure map, phase boundaries of 

the transitions (2)-(5) are mapped based on temperatures and inter-bilayer distances of 

the Lα structures along the phase boundaries in the temperature-composition phase 

diagram of Figure 4.2.1. These inter-bilayer distances represent the extreme values for 

stable Lα configurations at different temperatures. Exceeding a certain inter-bilayer 

distance at a specific temperature may destabilize the Lα phase. For example, at 60 °C 

cardiolipin molecules can stay in an Lα structure as long as the inter-bilayer distance is 
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Figure 5.1.1. Structure map of cardiolipin-water mixtures. The map corresponds to the 

temperature-composition phase diagram shown in Figure 4.2.1 and was mapped based 

on sample temperatures and inter-bilayer distances of the Lα phase along phase 

boundaries of the phase diagram. The abscissa is the inter-bilayer distance of the 

"pure" Lα phase and does not necessarily reflect the distance for a coexisting lamellar 

structure. Circles are the Lα phase along the Lα↔ Lα+HII phase boundary; a diamond 

represents the Lα↔ Lα+TC boundary; squares are along the lamellar-lamellar phase 

separation boundary; triangles are along the Lα↔ Lα+Gel phase boundary. Stars 

denote inter-bilayer distances of a 32.9 wt% cardiolipin-water mixture at different 

temperatures and imply a possible path for a temperature variation in a constant 

sample concentration (see the text for details). Phase boundaries backed by data are 

approximated with black solid lines. The speculated boundaries are denoted with 

dashed lines. Dashed lines with open ends reflect uncertainty regarding the boundary. 

A blue dashed line near the Lα↔ Lα+HII phase boundary is a speculation for the effect 

of adding alkane. Note the inter-bilayer distance is higher to lower from left to right.  
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>3.8 Å. Shortening the inter-bilayer distance by, say, removing the inter-bilayer water 

to below 3.8 Å would lead to the Lα↔ Lα+HII phase transition. It is interesting to 

notice that all the phase transitions from the Lα phase are associated with shrinking 

inter-bilayer distances, even when those transitions involved no non-lamellar phase. 

The Lα↔ gel+water transition was excluded because the main transition was more 

related with the bilayer thickness and more or less independent of the bilayer 

separation. One may find close similarity when comparing the structure map and the 

phase diagram. However, it should be noted that both temperature and sample 

concentration are factors dictating the inter-bilayer distance. The structure map is not a 

direct conversion of the phase diagram. An isothermal concentration variation in a 

phase diagram follows a straight horizontal path in the structure map while a 

temperature variation in a constant concentration should contour a curved path as 

illustrated in Figure 5.1.1 by orange star marks. It should also be noted that abscissa is 

the inter-bilayer distance of a "pure" Lα structure, i.e. without coexisting with another 

phase. When across the boundaries to the coexistence regions, values in the abscissa 

may not necessarily represent the inter-bilayer distances of lamellar structures. 

Moreover, readers are cautioned that the map is a simplification of complicated 

mechanisms underlying phase transitions (e.g. temperature and concentration also 

affect the bilayer thickness as shown in Figures 4.3.6 and 4.3.10, and consequently the 

phase behavior as discussed in Section 4.3.1). It serves the purpose of facilitating the 

following discussion, which itself is also a simplified picture.  
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5.1.2 Lα↔Lα+HII Phase Transition 

 

As mentioned in Section 4.3, decrease in the inter-bilayer distance of the Lα phase to a 

near or even negative value by increasing sample concentration appears to coincide 

with onset of the Lα↔ Lα+HII transition. Based on Figure 5.1.1, we may be able to 

explain this observation in terms of forces and interactions among lipid aggregates. 

Following the discussion in Section 2.3.1, forces and interactions determining phase 

preference in our cardiolipin system may include hydrocarbon chain packing stress, 

bilayer thermal undulation, inter-bilayer hydration interactions, the monolayer elastic 

energy, and electrostatic interactions, the last of which may be further divided into 

inter-bilayer repulsion and lateral repulsion within a bilayer as discussed in Section 

2.2.5. Hydration interactions will not be considered here because, as discussed in 

Section 2.3.1, it is less significant to a lamellar-non-lamellar phase transition and may 

be implicitly included in the elastic energy consideration. Moreover, the discussion in 

Section 2.2.6 has indicated that thermal undulation is negligible unless charges on the 

cardiolipin headgroups are neutralized, such as by adding counterions, to result in a 

monolayer bending modulus of ~1kBT. Therefore, we will only consider the remaining 

three interactions in the case of the Lα↔ Lα+HII transition.  

As the inter-bilayer distance shrinks, many factors may favor formation of the HII 

phase. Here, the most obvious one is the electrostatic inter-bilayer repulsion, arising 

from two approaching similarly charged surfaces. According to the double-layer 

theory (the first term of Equation 2-12), this repulsive force intensifies exponentially 

with shrinking distance between the two surfaces. It therefore is expected to be the 

principal driving force in destabilizing the lamellar structure. Other contributions 

include higher monolayer spontaneous curvatures due to diminishing headgroup 
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surface areas and weaker hydrocarbon chain packing stress in lower water contents 

(Section 4.2). On the other hand, the elastic energy/electrostatic lateral repulsion and 

hydrocarbon chain packing stress are interactions driving cardiolipin molecules back 

to the lamellar structure. Here, the elastic energy and electrostatic lateral repulsion are 

treated as a single factor because the former is expected to reflect effect of the latter 

(Section 2.2.5). Although cardiolipin molecules prefer to occupy a wedge-shaped 

time-averaged volume, i.e., a strong negative spontaneous curvature (see Section 2.2.4 

for a discussion in the spontaneous curvature), electrostatic lateral repulsion forces the 

molecules to adopt a more cylindrical-like time-averaged shape as a lamellar structure. 

Moreover, lower water contents also lead to higher elastic energy costs for forming the 

HII phase. This is because the monolayer curvatures ( RC 2/1= , where R is the water 

core radius of a HII structure) in Equation 2-14 are further away from the zero value of 

the spontaneous curvature, even though hydrocarbon chain packing stress decreases 

with reducing water core radius. Taken together, this provides a perspective on the 

lamellar-non-lamellar phase transition for our system, in which two types of 

electrostatic interactions compete with each other to determine phase preference, 

supplemented with effects arising from variation in hydrocarbon chain packing stress 

and also from some thermal-related factors when temperature is a variable. 

We now turn to explaining the Lα↔ Lα+HII transition based on Figure 5.1.1. 

According to Figure 5.1.1, the energy penalty associated with electrostatic inter-

bilayer repulsion accumulated as the bilayer separation of cardiolipin-water mixtures 

shrank at a given temperature. Nevertheless, this repulsive force was still insufficient 

to overcome the elastic energy barrier arising from the electrostatic lateral repulsion 

until a certain inter-bilayer distance was reached when it was too costly to stay in the 

Lα phase. This threshold bilayer separation was larger at higher temperatures where 
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contributions from some thermal-related factors (e.g. stronger thermal motions of 

hydrocarbon chains lead to more wedged shapes) were significant enough to affect the 

overall free energy and reduced the required electrostatic inter-bilayer repulsion to 

compete with its lateral counterpart. Also, strength of electrostatic inter-bilayer 

repulsion is itself proportional to temperature (see the electrostatic double layer 

theory, first term of Equation 2-12). This might also contribute to decrease of the 

threshold with increasing temperature. Generally, the threshold bilayer separation was 

0.15±2.52 Å. Any Lα structure exceeding that threshold would collapse when 

temperature is high enough (>20 °C according to the data presented in Chapter 4). 

Hydrocarbon chain packing stress was also important in this context. As shown in 

Section 4.6, relaxing the packing stress within cardiolipin aggregates depressed the 

Lα↔ Lα+HII transition temperature considerably. In terms of the structure map, adding 

alkane to relax the packing strain is equivalent of shifting the Lα↔ Lα+HII boundary of 

the map toward longer inter-bilayer distance or lower temperatures or both (blue 

dashed line in Figure 5.1.1). Nevertheless, relaxing the packing strain was still unable 

to generate the "pure" HII phase. This suggests the supreme dominance of the 

electrostatic lateral repulsion in cardiolipin phase preference. Also, because the HII 

phase is generally less hydrated than the Lα phase (Section 1.3.2; Gawrisch et. al., 

1992; Gruner, 1985), the extra water dispelled during the HII structures formation 

might be adsorbed by the coexisting Lα phase, slightly expand the inter-bilayer 

distance, and stabilize the Lα structures.  
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5.1.3 Lamellar-lamellar Phase Separation and Lα↔Lα+Gel Phase Transition 

 

At the end of Section 4.4, we introduced the strong-coupling theory to explain the 

lamellar-lamellar phase separation phenomenon. This approach can also be described 

in the context of the structure map. It may work as follows: From Figures 4.2.3 and 

4.4.7, it is observed that d-spacing of the Lα1 phase expanded when more Lα2 

structures were formed. Moreover, even though electron density profiles in the phase 

separation region were reconstructed with the peak integration method (Section 4.4) 

and the extracted bilayer separations were based on the Luzzati definition (see Section 

4.3.2), we could still obtain the bilayer separations defined with Equations 4-2 and 4-3 

when considering the fact that the parameter differentiating the two definitions, Hσ , 

was centered at 3 Å with very small variations (Tables 4.3.3 and 4.3.5). Accordingly, 

we converted bilayer separation of the Lα2 phase from ~12.95 Å defined by Luzzati to 

~0.95 Å defined with Equations 4-2 and 4-3, and this value was expected to vary only 

slightly with temperature and sample concentration based on the observations for d-

spacings in Figures 4.3.1 and 4.4.5 (Figure 5.1.1 was also plotted based on this value). 

In other words, vast majority of the water content in the Lα2 phase was squeezed out of 

the inter-bilayer space during formation of the phase, regardless of temperature and 

sample concentration. All these observations indicate that the Lα1 phase adsorbed any 

extra water from the condensed Lα2 phase as would have been done by the regular Lα 

phase.  

Back to the context of the structure map, as the inter-bilayer distance of the regular 

Lα phase reached a threshold value at a given low temperature, the system was unable 

to reduce the energy penalty by forming the HII structures at low temperatures and 

therefore could manage to maintain the lamellar structures by resorting to the strong-
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coupling interaction. This interaction stabilized the condensed Lα2 structures while 

simultaneously releasing the extra water to the Lα1 structures, expanding the inter-

bilayer separation and consequently reducing the intensifying electrostatic inter-

bilayer repulsion of the Lα1 structures as well as total free energy of the entire system. 

Contrary to the Lα↔ Lα+HII transition, the inter-bilayer distance threshold for the 

lamellar-lamellar phase separation decreased with increasing temperature. According 

to Equation 4-16, the coupling parameter Ξ  decreases its value quadratically with 

elevating temperature. Based on the correlation between the parameter and energy 

contribution of the strong-coupling interaction (Boroudjerdi et. al., 2005), the 

attraction stabilizing the Lα2 diminished at higher temperatures and therefore could be 

a feasible way to relax the energy penalty only when the electrostatic inter-bilayer 

repulsion became even stronger. All the threshold inter-bilayer distances for the phase 

separation at different temperatures were found to be longer than those for the Lα↔ 

Lα+HII transition. This does not mean the cardiolipin lamellar structures were more 

intolerable to comparable electrostatic inter-bilayer repulsion at lower temperatures 

but only reflects that the strong-coupling interaction was capable of offering a 

structural configuration with a lower overall free energy than maintaining the status 

quo.  

As the bilayer separation of the Lα phase kept shrinking, formation of the Lα2 

phase could not reduce the overall free energy because there was no extra water to be 

squeezed out when the inter-bilayer water was drained. Without any other lower 

energy configuration accessible, the Lα phase could only stay in the same structure 

until another threshold inter-bilayer distance was reached. The strong-coupling might 

play a role in this case as well but instead of assisting phase separation, it might have 

facilitated formation of the gel phase and led to the Lα+gel coexistence phase. As 
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shown in Figure 4.3.11, the gel phase formed by our cardiolipin systems were in the 

excess water condition with an essentially zero inter-bilayer distance. Again, the 

strong-coupling interaction was presumed to stabilize this gel structure and, when in 

the Lα+gel coexistence phase, the released excess water from the gel phase was 

absorbed by the coexisting Lα phase to reduce the energy penalty arising from 

electrostatic inter-bilayer repulsion. The latter speculation is supported by an 

observation in which d-spacings of the Lα phase expanded more rapidly with 

depressing temperature in the Lα+gel coexistence region than in the pure Lα+gel 

region, as more gel structures were formed at lower temperatures (e.g. Figure 5.1.2). 

This phenomenon is similar to the relationship between the Lα1 and Lα2 phase. The 

threshold bilayer separation for the Lα↔Lα+gel transition was virtually independent of 

temperature and centered ~0. It appears that the Lα phase would transform to the 

Lα+gel phase when the inter-bilayer distance reaches zero as long as thermal motions 

of the hydrocarbon chains are dampened. It should be noted that the strong-coupling 

interaction could be swapped with the hydration "attraction" discussed in the end of 

Section 4.3.3 without affecting other arguments. However, readers should be reminded 

that the hydration attraction theory is still controversial.  

 

5.1.4 Lα↔Lα+TC Phase Transition 

 

One of the most peculiar experimental observations in this thesis study is formation of 

the "tiny crystals cluster-like" (TC) phase. We speculated that the cardiolipin 

molecules were arranged in an inverted micellar configuration in this phase (Section 

4.5). In the context of the structure map, the Lα phase transformed to the Lα+TC 

coexistence phase when the inter-bilayer distance was sufficiently short but 

temperature was not high enough to induce formation of the HII phase and also not low   
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Figure 5.1.2. Repeat distances of lamellar phases as a function of temperature for an 

80.6 wt% cardiolipin-water mixture. Between two vertical dashed lines is the Lα+gel 

coexistence region. A red dashed line is a linear fit to the Lα structures at temperatures 

>-9 °C, i.e. out of the coexistence region, and highlights the more rapid variation of d-

spacing in the coexistence region. 

 

enough to facilitate the lipid main transition. As a result, the system resorted to 

forming the TC phase to reduce the energy penalty. This might also be associated with 

the intermediate spontaneous curvature (relative to the charged phospholipids, DOPS 

and DOPA) expressed by cardiolipin, which was collectively contributed by its doubly 

charged headgroups and quadruple hydrocarbon chain configuration (see Section 4.2 

for the phase diagram comparison). However, due to lack of more detailed structural 

information, we are unable to have a deeper discussion and can only speculate that the 

phase was an intermediate state between the HII and Lα structure.  
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5.2 Conclusions and Future Work 

 

The structure map of Figure 5.1.1 is motivated by reducing the mechanisms behind the 

observed cardiolipin phase behavior to four interactions, namely two competing 

electrostatic interactions, hydrocarbon chain packing stress and the strong-coupling 

interaction. From this approach, we notice the importance of the headgroup charges in 

cardiolipin phase preference. Neutralizing the surface charges by adding counterions 

can change cardiolipin phase behavior dramatically (Rand and Sengupta, 1972; 

Vasilenko et. al., 1982; Loosley-Millman et. al., 1982; Seddon et. al., 1983). From our 

discussion above, we may argue that the counterion-induced HII structure formation is 

mainly carried out by decreasing electrostatic lateral repulsion while the simultaneous 

reduction in electrostatic inter-bilayer repulsion is counteractive to the phase 

transition. Similar arguments are applicable to explaining disappearance, if any, of the 

lamellar-lamellar phase separation and Lα↔Lα+gel transition in, say, cardiolipin-

CaCl2 mixtures. Moreover, the benefit of adopting the structure map approach is that it 

simplifies and generalizes the underlying mechanism of cardiolipin phase behavior. In 

addition to sample concentration, other experimental variables that may change the 

inter-bilayer distance or electrostatic inter-bilayer repulsion of the Lα structure, such as 

hydrostatic pressure, osmotic pressure, or counterions, might be interpreted in the 

context of the structure map for their effects on cardiolipin phase preference. In other 

words, the structure map may be a generalized type of phase diagram. 

Many experimental studies can be developed based on the foundation laid with 

this thesis study. To strengthen the structure map perspective proposed here, 

corresponding experiments on cardiolipin with different chain lengths are suggested 

and much more extensive WAXS data is also required. Studies on cardiolipin in the 



208 

presence of various counterions or under high pressure will also be needed to further 

generalize this structure map approach. Another study that can be carried out is to 

develop the semi-quantitative approach of the structure map further into a quantitative 

one. This may be carried out by experimentally relating the inter-bilayer distance to 

the inter-bilayer electrical potential with the widely used osmotic method (e.g. Cowley 

et. al., 1978) and measuring the elastic energy at different temperatures (e.g. Gruner et. 

al., 1986). In so doing, this structure map may be transformed to an "energy map", 

which is more independent of sample identity or experimental approaches. 

Measurement of the theoretic strong-coupling interaction may also be done by 

correlating the inter-bilayer electrical potential with that interaction. In addition, the 

TC phase observed here may deserve more experimental attention to completely 

decipher the nature and origin of the phase.  
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