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Due to irreversible radiation damage, structure determination of biological macro-

molecules using X-rays is often done by taking snapshots from individual copies of

the sample and assembling the snapshots in the end to solve the 3D structures. It is diffi-

cult to control the orientations of micron or sub-micron sized specimens when delivered

to the X-ray beam. Furthermore, the signals in the snapshots may be so weak that each

of them cannot be oriented separately.

This thesis develops algorithms to address the task of 3D reconstruction from un-

oriented, noisy snapshots, with special focus on two X-ray methods. For the first one,

single particle imagining at X-ray free electron lasers, we discuss the difficulty of ori-

entation reconstruction of samples through computer simulation, and then present the

analysis results of two experimental datasets. For the second technique, serial micro-

crystallography at synchrotron storage ring sources, we first describe the development

of our reconstruction algorithm through two proof-of-concept studies. In these studies,

diffraction patterns were collected from large protein crystals to simulate the signal level

of those collected from protein microcrystals at storage ring sources. Finally, we demon-

strate our method by solving a protein structure from microcrystal diffraction patterns

collected at a storage ring synchrotron source. These data would have been discarded

by crystallographers because of their weak signals. Through the detailed presentation

of the analysis processes, this thesis is also meant to be a self-contained tutorial on

reconstruction problems using X-ray sources.



BIOGRAPHICAL SKETCH

Ti-Yen Lan was born in 1990 in Taoyuan, Taiwan, where he lived until 18 years old. He

then attended National Taiwan University and received his Bachelor of Science degree

in physics in 2012. After a year-long military service in Hualien, Taiwan, a place known

for its magnificent gorges, he moved to Ithaca, a beautiful town also full of gorges, for

his doctoral studies in physics at Cornell University.

iii



To Patty and Evelyn.

iv



ACKNOWLEDGEMENTS

I would like to first express my gratitude to my advisor, Veit Elser, for his guidance

throughout the past five years. WorkingwithVeit has been a lot of fun. Iwas continuously

challenged to seek simpler solutions to problems because of his appreciation of simplicity.

This training is invaluable in shapingmyview as a scientist. Besides guidance in research,

his advice on career and life helped me navigate through many stressful situations. It

would be ungrateful to ask for a better advisor than Veit.

A good portion of the work in this thesis was impossible without the constant help

and encouragement from Sol Gruner and his group. Sol was like my second advisor. My

discussions with him have not only enriched my knowledge about experiments, but also

benefited my research in algorithm development. His patience, humbleness and passion

about research exemplify the qualities of a good scientist for me.

I also want to thank Tomas Arias, who served on my committee, for bringing the

interesting question aboutBayes’ rule inmyA-exam. What I have learned fromanswering

that question remains very helpful to my research.

Discussions with the senior Elser group members, Duane Loh, Kartik Ayyer, Zhen

Wah Tan, Hyung Joo Park and Yi Jiang, have stimulated many interesting ideas for

my research. I especially thank Duane Loh, Kartik Ayyer and Yi Jiang for providing

me useful career suggestions. Outside the Elser group, I want to thank my amazing

collaborators in the Gruner group, Jeney Wierman, Mark Tate and Hugh Philipp, for

bringing me high-quality data. I thank Jeney, also, for much of the crystallographic

structure analyses. Without their efforts, I was not able to do my work. Their patience

in answering my naive questions about experiments is also appreciated.

Barry Robinson, the IT manager at LASSP, has been very kind in helping me with

computing issues. Barry is always open for discussions whenever I show up with

questions to bug him. Besides Veit, he might be the person who has taught me the most

v



about computation.

I could not survive the past five years in Ithaca without the company of my friends

Archishman Raju, Hao Shi, Phil Burnham, Andre Frankenthal, Katherine Quinn and

Brendan Faeth. The after-lunch coffee times we spent at Gimme Coffee will remain as

an important part of my memory about graduate school.

I would like to thank my parents and my brother for their constant support. Finally,

I thank my wife, Patty, for always being there. It has been a beautiful adventure to be

with you and our adorable Evelyn.

This work was supported by the Department of Energy (DOE) grants DE-FG02-

11ER16210 and DE-SC0005827, and the Taiwan Government Scholarship to Study

Abroad. As a theorist, my role in the work presented here was confined to discussion of

the acquisition and/or analysis of the data collected by my experimental collaborators.

This would not have been possible without the sources of support that my collabora-

tors used to acquire these data: The Gruner group was supported by the DOE grants

DE-FG02-10ER46693, DE-SC0016035 and DE-SC0017631. Use of the Cornell High

Energy Synchrotron Source (CHESS) was supported by the NSF award DMR-1332208,

and the Macromolecular Diffraction at CHESS (MacCHESS) resource was supported by

the NIGMS award GM-103485. Use of the Linac Coherent Light Source (LCLS), SLAC

National Accelerator Laboratory, was supported by the U.S. DOE, Office of Science,

Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Use of the

Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the

DOE Office of Science by Argonne National Laboratory, was supported under Contract

No. DE-AC02-06CH11357.

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Theory 4
2.1 Interactions of X-rays with matter . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Photoelectric effect . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Coherent scattering . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Incoherent scattering . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 X-ray diffraction basics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 First-order Born approximation . . . . . . . . . . . . . . . . . 9
2.2.2 X-ray diffraction of materials . . . . . . . . . . . . . . . . . . . 9
2.2.3 X-ray diffraction of crystals . . . . . . . . . . . . . . . . . . . 11
2.2.4 Phase problem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 EMC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Standard EMC algorithm . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Different likelihood models . . . . . . . . . . . . . . . . . . . 22
2.3.3 Local update scheme . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Memory-efficient parallel implementation . . . . . . . . . . . . 28

3 Single Particle Imaging 30
3.1 Sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Diffraction pattern simulation . . . . . . . . . . . . . . . . . . 31
3.1.2 SNR of speckles . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Hardness of orientation reconstruction . . . . . . . . . . . . . . 36

3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Normalized surprise function . . . . . . . . . . . . . . . . . . 42
3.2.2 Structure reconstruction . . . . . . . . . . . . . . . . . . . . . 45

4 Table-top Sparse Crystallography 49
4.1 Single-axis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Two-axis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 EMC reconstruction . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



5 Serial microcrystallography at a storage ring source 69
5.1 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 EMC reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Low-resolution reconstruction . . . . . . . . . . . . . . . . . . 75
5.2.2 High-resolution reconstruction . . . . . . . . . . . . . . . . . . 77
5.2.3 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Structure solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions 86

A Tutorial on crystal intensity reconstruction 88
A.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.1 Mapping detector pixels . . . . . . . . . . . . . . . . . . . . . 91
A.2.2 Background estimation and peak finding . . . . . . . . . . . . . 92
A.2.3 Lattice parameter estimation . . . . . . . . . . . . . . . . . . . 93
A.2.4 Finding probable orientations . . . . . . . . . . . . . . . . . . 95
A.2.5 Data conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2.6 Expansion matrix calculation . . . . . . . . . . . . . . . . . . . 97
A.2.7 Skipping data reduction . . . . . . . . . . . . . . . . . . . . . 98

A.3 Low-resolution EMC reconstruction . . . . . . . . . . . . . . . . . . . 99
A.4 High-resolution EMC reconstruction . . . . . . . . . . . . . . . . . . . 101
A.5 Resolution estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 104

viii



LIST OF TABLES

3.1 Parameters for the SPI simulations. . . . . . . . . . . . . . . . . . . . 33

4.1 Refinement statistics of the structure solved from the single-axis dataset. 57

5.1 Refinement statistics of the EMC-reconstructed structure solution and
the structure solved from the indexed frames, PDB entry: 5UVJ. . . . . 82

ix



LIST OF FIGURES

3.1 Resolution dependent SNR of speckles for the proposed SPI samples. . 35
3.2 Mutual information measure of hardness of orientation reconstruction

for the proposed SPI samples. . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Integrated orientational information over resolution. . . . . . . . . . . 39
3.4 Diffraction patterns of a single-particle hit of RDV. . . . . . . . . . . . 43
3.5 Front detector normalized surprise (z-score) versus back detector parti-

cle size fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Diffraction pattern of a single-particle hit of PR772 virus. . . . . . . . 46
3.7 Central slices of the reconstructed 3D intensity model of PR772 virus. . 47
3.8 Central slices of the reconstructed real-space contrast of PR772 virus. . 47

4.1 Schematic of the single-axis sparse crystallography experiment. . . . . 52
4.2 Randomly selected data frames from the single-axis dataset. . . . . . . 53
4.3 Slices of the reconstructed and reference intensity models using the

single-axis dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Angular error of the reconstructed most probable orientations. . . . . . 55
4.5 Reconstructed protein structure from the single-axis dataset superim-

posed on the model used in molecular replacement. . . . . . . . . . . . 58
4.6 Schematic of the two-axis sparse crystallography experiment. . . . . . 60
4.7 Statistics of the number of peaks per collapsed frame of the two-axis

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Average SNR of the integrated Bragg intensities from the converged

intensity maps at different stages of the reconstruction. . . . . . . . . . 64
4.9 Slices of the reconstructed and reference intensity models using the

two-axis dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.10 Scatter plot comparing the integrated Bragg intensities from the recon-

structed and reference intensity maps using the two-axis dataset. . . . . 66
4.11 Plot of CC∗ as a function of spatial frequency magnitude. . . . . . . . 67

5.1 Photon count thresholds defined by the cumulative Poisson probability. 72
5.2 1D pseudo-powder pattern generated from the frequency of the inter-

peak distances in reciprocal space. . . . . . . . . . . . . . . . . . . . . 73
5.3 Statistics of sparse data frames used in the EMC reconstruction. . . . . 74
5.4 Results of the low-resolution EMC reconstruction from the SMX dataset. 77
5.5 High-resolution intensity reconstruction from the SMX dataset. . . . . 78
5.6 Correlation coefficients that validate the quality of the reconstruction. . 79
5.7 Superposition of the ribbon representations of the backbone chains of

our structure solution and the structure solved from indexed frames. . . 82
5.8 Superposition of the four disulfide bonds of our structure solution and

the structure solved from indexed frames. . . . . . . . . . . . . . . . . 83
5.9 Scattering profiles of LCP and water. . . . . . . . . . . . . . . . . . . 84

A.1 Flowchart of the analysis of SMX data using our software package. . . 90

x



CHAPTER 1

INTRODUCTION

Structure determination of biologicalmacromolecules is practically a battle against struc-

tural damage caused by photons or electrons. For the past few decades, crystallography

has been the method of choice because the periodic arrangement of structural units en-

hances the weak signals of individual molecules through constructive interference of the

scattered waves, which produces the sharp Bragg peaks in the recorded diffraction pat-

terns. The signal enhancement allows the collection of adequate information to resolve

the structure of the constituent molecules before their structures are compromised by

radiation or electron damage. With the developments in X-ray synchrotron sources, ex-

perimental technology and data analysis methods, crystallography has contributed over

126,000 structures to the Protein Data Bank (PDB) to date. What challenges crystallog-

raphy, however, is to form sufficiently large single crystals that diffract to high resolution

and minimize the irreversible structural damage. The structure determination of many

functionally important proteins, such as membrane proteins, may fail at this stage.

Another route to the structure solution of macromolecules is through the single-

particle approach, which avoids the necessity of crystallization. In the single-particle

approach, structural information is collected from many individual macromolecules, or

particles, of reasonably similar structures at random orientations. To minimize structural

damage, either the net dose is limited or the exposure time of the illumination ismade very

short. The 3D structure is solved by assembling many noisy signals from the randomly-

oriented particles. A representative technique is single-particle cryoelectron microscopy

(cryo-EM) [23], which solves the 3D structure bymerging 2Dprojection images collected

from individual, randomly-oriented particles. The particles are cryogenically preserved

in a thin layer of vitreous ice to mitigate the electron damage. In the past few years,
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the advance in direct electron detectors has brought the resolution of this technique to

near-atomic level [43], and makes it competitive with crystallography.

Due to the smallness of biological macromolecules, single-particle data is usually

extremely noisy, which makes the 3D structure reconstruction from the unoriented, noisy

data a daunting task. This thesis focuses on developing analysis methods to tackle the

3D reconstruction problem from unoriented X-ray data. The main applications of our

methods lie in single particle imaging (SPI) at X-ray free electron lasers (XFELs) and

serial microcrystallography (SMX) at storage ring synchrotron sources, which share the

same characteristics that the data frames are too noisy to be oriented on a per frame

basis. The structure of the thesis is outlined as follows.

Chapter 2 lays out an overview of the theoretical background of structure determina-

tion using X-ray diffraction. The interactions of X-rays with matter are described in the

language of scattering theory, which helps to visualize the competition between different

types of interactions and to relate the commonly used terms in X-ray crystallography.

Subsequently, we present the formalism of how structural information is encoded in

diffraction patterns, and elaborate on a special kind of sample: crystals. The missing

phase problem in X-ray diffraction measurements and different methods for phase re-

trieval are also discussed, for both non-crystalline and crystalline cases. After that, we

introduce the expand-maximize-compress (EMC) algorithm, the core algorithm in this

thesis to reconstruct 3D intensity maps from unoriented diffraction patterns. Finally, we

explain variants of the EMC algorithm for different experimental conditions or that save

on computational resources.

Chapter 3 describes our contribution to SPI experiments from the theoretical side.

We first present a computer simulation study on the selection of appropriate samples

for the first few R&D experiments based on the difficulty to assemble the unoriented
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diffraction patterns. The analysis results of two SPI datasets are then discussed. Using

the first dataset, we introduce a metric derived from Poisson statistics that measures the

consistency of a diffraction pattern with a known structure model. We then show the 3D

structure of a virus particle solved at a modest resolution from the second dataset.

In Chapter 4, we develop the EMC algorithm through two proof-of-concept studies.

In these studies, diffraction patternswere collected from large protein crystals illuminated

by a dim lab X-ray source to simulate those collected from many microcrystals. The

orientations of the data frames were kept unknown to the reconstruction algorithm. By

increasing the experimental complexity, we show that our reconstruction method should

be able to undertake the analysis of a real SMX dataset.

Chapter 5 presents a step-by-step analysis of a real SMX dataset collected at a storage

ring source. In particular, we demonstrate that 3D intensity reconstruction is still feasible

from data frames whose signals are too weak to be considered by crystallographers.

Furthermore, the structure solved from our reconstructed Bragg intensities compares

favorably with that solved from data with stronger signals using more conventional

means. The implementation details of our analysis package is given in Appendix A.
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CHAPTER 2

THEORY

This chapter gives an overview of the key theoretical concepts behind this thesis. We

first discuss the major interactions of X-rays with matter, and how structural information

of materials is encoded in the spatial distribution of coherently scattered X-rays, which is

recorded in the form of diffraction patterns by pixelated detectors. Since the diffraction

measurements only provide the magnitudes of the scattered waves, the retrieval of

the missing phases is described that uses prior information on the sample to solve its

structure. When the sample is radiation sensitive, information about its 3D structure

may be obtained by collecting diffraction patterns from individual copies of the sample

at various orientations. However, it is difficult to experimentally control the orientations

of micron or sub-micron sized specimens, and orientation reconstruction is challenging

because the diffraction patterns from the small specimens are shot-noise limited. In

the last part of the chapter, we introduce the EMC algorithm [46], which assembles the

noisy, unoriented diffraction patterns to form the 3D intensity distribution of the sample

by maximizing the data likelihood. Variants of the algorithm are discussed that tackle

different experimental conditions and ease the computational demands.

2.1 Interactions of X-rays with matter

In the energy range of X-rays (100 eV - 100 keV), the photon interaction cross section

of an isolated atom is mainly contributed by the photoelectric effect, coherent scattering

and incoherent scattering [36]:

σtot = σpe + σcoh + σincoh. (2.1)
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The details of these interactions and their contributions toX-ray diffractionmeasurements

are as follows.

2.1.1 Photoelectric effect

In the photoelectric effect, an atom absorbs all the energy of the incident photon and

ejects a core electron. The resulting vacancy is then filled by an electron from a higher

energy level. The energy difference is released by either X-ray fluorescence or ejecting

another electron, which is called an Auger electron. The emitted fluorescence photon

has a random direction and phase, and contributes to the background in diffraction

measurements incoherently.

2.1.2 Coherent scattering

Coherent scattering is the signal of interest in most X-ray diffraction experiments. As

suggested by its name, the scattered wave is coherent, and the phase depends on the

positions of the scatterers. This section describes the coherent scattering of X-rays by

electrons and atoms.

Coherent scattering by electrons

Consider a plane wave of linear polarization Einc incident on a particle of charge qp and

mass m placed at the origin. The charged particle undergoes an oscillating acceleration

a = qpEinc/m and emits electromagnetic radiation that is coherent with the incident

wave. The electric field of the scattered wave observed at position r in the far field can
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be expressed as

Esc =
qp

4πε0c2
r × (r × a)
|r|3

=
q2

p

4πε0mc2
r × (r × Einc)

|r|3
, (2.2)

where ε0 is the vacuum permittivity, and c is the speed of light.

The scattered intensity, which is defined as the average power transferred per unit

solid angle, is given by

Isc =
ε0c
2
|r|2 |Esc |

2 = sin2 α
( q2

p

4πε0mc2

)2
〈S〉inc = P

( q2
p

4πε0mc2

)2
〈S〉inc , (2.3)

where α is the angle between r andEinc, 〈S〉inc =
ε0c
2
|Einc |

2 is the average incident energy

flux density, and P = sin2 α is called the polarization factor. From Equation (2.3) we

define the differential cross section for the coherent scattering from a charged particle as( dσ
dΩ

)
coh
=

Isc
〈S〉inc

= P
( q2

p

4πε0mc2

)2
. (2.4)

The inverse proportionality to the squared mass suggests that electrons are the dominant

scatterers in coherent scattering. The quantity

re =
e2

4πε0mec2 ∼ 2.82 × 10−15 m , (2.5)

which has units of length, is called the classical electron radius. Here e and me represent

the electron charge and mass, respectively.

Coherent scattering by atoms

The coherent X-rays are mainly scattered by the electron cloud of an atom because the

heavy nucleus is barely moved by the electric field of the incident wave. For an atom

with electron density ρ(x) placed at the origin, the scattered wave observed at position

r in the far field can be approximated by the superposition of the waves scattered by the
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individual electrons:

Esc = re
r × (r × Einc)

|r|3

∫
dx ρ(x) e−iq·x, (2.6)

where q is the wave-vector difference between the scattered and incident waves. Com-

paring Equation (2.6) with Equation (2.2), we can see that the scattering amplitude of an

isolated atom is quantified by the integral

f (q) =
∫

dx ρ(x) e−iq·x, (2.7)

which is called the atomic scattering factor. The coherent scattering cross section of the

atom can therefore be written as( dσ
dΩ

)
coh
= P r2

e | f (q) |2. (2.8)

The above derivation of the atomic scattering factor ignores the internal structure of

an atom — the electron energy levels. When the incident photons have energy close to

an absorption edge to excite a core electron, the atomic scattering factor is corrected by

f (q, λ) = f (q) + f ′(λ) + i f ′′(λ), (2.9)

where f ′(λ) and f ′′(λ) are called the anomalous scattering factors and are exploited to

gain phase information in crystallography. The X-ray energy considered in this thesis is

assumed to be far from any absorption edge, so Equation (2.7) is a good approximation

of the atomic scattering factor.

2.1.3 Incoherent scattering

In contrast to coherent scattering, the incident photons lose a fraction of the energy to

the electrons of an atom in incoherent scattering. This process, also known as Compton
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scattering, is best described by the elastic collision of a photon with an electron. A

photon of wavelength λ has momentum h/λ, where h is the Planck constant. When the

photon strikes on an atomic electron, approximated as being at rest, the electron recoils

and emits another photon of wavelength λ′ at scattering angle θ. We can determine the

wavelength difference by energy and momentum conservation as

λ′ − λ =
h

mec
(1 − cos θ). (2.10)

The quantity h/mec is called the Compton wavelength and has the numerical value

2.43 × 10−2 Å. The small wavelength difference makes Compton photons unresolvable

from coherent photons by normal X-ray detectors.

By neglecting the exchange interactions between electrons of an atom, the differential

scattering cross section of Compton scattering can be approximated as( dσ
dΩ

)
incoh
= P r2

e

(
Z −
| f (q) |2

Z

)
, (2.11)

where Z is the atomic number of the atom [31]. Because | f (q) | drops rapidly from

Z to 0 with the increase of |q|, Compton scattering can be ignored at small scattering

angles and becomes significant only at large scattering angles. As we will see in the

next section, the periodic arrangement of the atoms in a crystal can enhance the coherent

scattering signal by coherently adding up the scattering amplitudes of the atoms. On the

other hand, it is the atomic scattering intensities, not amplitudes, that add up in Compton

scattering because the scattered photons are incoherent. As a result, incoherent scattering

is insignificant for X-rays scattering from crystals.
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2.2 X-ray diffraction basics

Here we describe how structures can be obtained from X-ray diffraction measurements.

The general and a special cases of samples — crystals — are discussed.

2.2.1 First-order Born approximation

Consider a sample of electron density ρ(x) =
∑

j ρ j (x − x j ), with j denoting the

individual atoms. When a plane electromagnetic wave illuminates the sample, the

scattered wave in the far field is the superposition of the emitted radiation driven by

the total electric field at the position of each atom. The first-order Born approximation

replaces the total electric field by the electric field of the incident wave, so the electric

field of the scattered wave at the far-field position r can be written as

Esc = re
r × (r × Einc)

|r|3

∫
dx ρ(x) e−iq·x

= re
r × (r × Einc)

|r|3
∑

j

e−iq·xj

∫
dx ρ j (x) e−iq·x

= re
r × (r × Einc)

|r|3
∑

j

f j (q) e−iq·xj . (2.12)

Multiple scattering in the sample is assumed to be negligible in the first-order Born

approximation. This assumption applies to optically thin samples, where the phase

change due to the sample can be ignored [72].

2.2.2 X-ray diffraction of materials

From Equation (2.12), we readily obtain the scattered intensity of the sample:

Isc = P r2
e 〈S〉inc

����
∑

j

f j (q) e−iq·xj
����
2
. (2.13)
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When the incident X-ray energy is far from any absorption edge of the constituent atoms,

the atomic scattering factors, f j (q), are given by Equation (2.7). With the Fourier

transform of ρ(x) given by

ρ̂(q) =
∫

dx ρ(x) e−iq·x =
∑

j

f j (q) e−iq·xj, (2.14)

the Fourier magnitudes have inversion symmetry:

| ρ̂(q) | = | ρ̂(−q) |, (2.15)

also known as the Friedel symmetry. The scattered X-rays are recorded in the form of

diffraction patterns by a pixelated detector. The mean photon number, 〈Ki〉, recorded by

pixel i over exposure time ∆t is given by

〈Ki〉 = Pi r2
e Jinc | ρ̂(qi) |2∆t ∆Ωi, (2.16)

where Pi is the polarization factor for pixel i, Jinc is the average incident photon flux

density, qi is the wave-vector difference between the wave scattered to pixel i and the

incident wave, and ∆Ωi is the solid angle subtended by pixel i.

The wave-vector difference, q, is also called the spatial frequency, and the space

of spatial frequencies is usually referred to as reciprocal space by crystallographers.

The spatial frequency magnitude is given by |q| = 4π sin(θ/2)/λ, where λ denotes the

wavelength of the incident wave, and θ is the angle between the incident wave vector and

the scattered wave vector. By defining the time-integrated intensity as

W (q) = r2
e Jinc | ρ̂(q) |2∆t, (2.17)

the mean photon number, 〈Ki〉, recorded by pixel i is given by

〈Ki〉 = Pi W (qi) ∆Ωi . (2.18)

Since the scattered waves have the same wavelength as the incident wave, the spatial

frequencies associated with the pixels all lie on a sphere in reciprocal space. This sphere,
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called the Ewald sphere, has radius 2π/λ and is centered at q = −kinc, where kinc is the

incident wave vector. As a result, each measured diffraction pattern corresponds to an

Ewald-sphere slice of the 3D contrast, W (q), multiplied by the pixel-wise polarization

factors and solid angles.

2.2.3 X-ray diffraction of crystals

A crystal features the periodic arrangement of a repeating structural unit, also known as

the unit cell. In particular, the electron density of a crystal can be expressed by

ρc(x) =
∑
y∈S

ρ(x − y), (2.19)

where S is a finite set of translation vectors and ρ(x) is the electron density of the

molecules in a unit cell. The crystal parameters are defined by a lattice Λ ⊂ RD, and

S ⊂ Λ is in practice a very large and compact subset.

X-ray diffraction measurements provide information on the Fourier magnitudes,

| ρ̂c(q) |, of the crystal, where

ρ̂c(q) =
∫

dx ρc(x) e−iq·x

=
∑
y∈S

e−iq·y
∫

dx ρ(x) e−iq·x

= ŝ(q) ρ̂(q). (2.20)

Here ρ̂(q) is the Fourier transform of ρ(x), and ŝ(q) is a modulating function that

depends on the crystal size. When the size of S grows, the values of ŝ(q) increasingly

concentrate on the reciprocal lattice points, Q ∈ Λ∗, where Λ∗ is the dual lattice to Λ in

reciprocal space. This concentration of diffracting power leads to the so-called Bragg

peaks in reciprocal space.
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Crystals often have symmetries other than the translational symmetries defined by

the lattice,Λ. For an (idealized) infinite crystal, the electron density, ρc(x), is unchanged

by elements in a finite group G. An element g ∈ G acts on the density function, ρc(x),

by the composition of an orthogonal matrix transformation (rotation or reflection), Rg,

and a translation, Tg:

g(ρc(x)) = ρc(Rg · x + Tg). (2.21)

Thus in addition to

ρc(x) = ρc(x + y), y ∈ Λ, (2.22)

the density function also satisfies

ρc(x) = g(ρc(x)), g ∈ G. (2.23)

The set of orthogonalmatrices Rg identifiesG with a point group (transformations that fix

the origin), while the set of pairs (Rg,Tg) together with the group of lattice translations,

Λ, specify the crystal’s space group. The space group manifests itself by the rotational

symmetry and systematic extinctions of Bragg peaks in reciprocal space [30].

From Equation (2.16), the mean photon number measured by pixel i is given by

〈Ki〉 = Pi r2
e Jinc | ρ̂c(qi) |2∆t ∆Ωi

= Pi r2
e Jinc | ŝ(qi) |2 | ρ̂(qi) |2∆t ∆Ωi . (2.24)

An interesting observation about | ŝ(q) |2 is that it is periodic over the reciprocal lattice.

Assume that Nc is the number of unit cells in the crystal. At the Bragg positions,

| ŝ(Q) |2 = N2
c , and the integration of | ŝ(q) |2 over a Bragg peak equals Nc. For sufficiently

large crystals (at least several tens of unit cells in each dimension), we can approximate

| ŝ(q) |2 by a sum of Dirac delta functions:

| ŝ(q) |2 ≈ Nc

∑
Q∈Λ∗

δ(q −Q). (2.25)
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The integral of the measured photons over a Bragg peak at Q hence gives information on

| ρ̂(Q) |2, and the signal strength is proportional to the number of unit cells in the crystal,

or equivalently, the crystal volume.

For the crystals considered in this thesis, protein crystals, the alignment of the

unit cells is imperfect. Instead, a protein crystal consists of many slightly misaligned

domains, called the mosaic blocks. Each mosaic block diffracts X-rays at a slightly

different orientation, which results in the broadening of Bragg peaks in reciprocal space.

Nevertheless, the widths of the Bragg peaks are still small enough so that the function

| ρ̂(q) |2 can be approximated as a constant over each peak. The integrated value over a

Bragg peak at Q is again proportional to | ρ̂(Q) |2 and the crystal volume.

2.2.4 Phase problem

In order to reconstruct the electron density of the sample, ρ(x), we need the magnitudes

and phases of its Fourier transform, ρ̂(q). However, X-ray diffraction measurements

only provide the Fourier magnitudes, | ρ̂(q) |. In addition, experimental limitations make

some values of | ρ̂(q) | inaccessible. For example, the value of | ρ̂(0) | cannot be measured

because scattered photons with zero spatial frequency are indistinguishable from the

unscattered photons. Both forms of information loss should be compensated by other

sources of information, and this is the task of phase retrieval.

Phasing crystallographic data

Consider a 1D discrete periodic function, f (xn), which has period ` and sample points

xn = n∆x = n`/N , n = 0, 1, 2, . . . , N − 1. This function can be fully represented by a
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Fourier series:

f (xn) =
1
√

N

N−1∑
k=0

f̂ (qk ) eiqk xn, (2.26)

where qk = k∆q = k (2π/`). Crystallographic measurements give the absolute values

of the Fourier components, | f̂ (qk ) |, so the reconstruction of the discrete signal, f (xn),

is under-constrained by a factor of 2.

Methods for phasing crystallographic data can be roughly divided into four cate-

gories: isomorphous replacement, anomalous dispersion, molecular replacement and

direct methods [63]. In isomorphous replacement, phases are calculated from the dif-

ferences in Fourier magnitudes between a native crystal and its heavy-atom derivatives,

assuming that the addition of heavy atoms does not change the original crystal struc-

ture. The method of anomalous dispersion takes advantage of the anomalous scattering

factors (Equation (2.9)) of the heavy atoms present in a crystal by tuning the incident

X-ray energy close to the corresponding absorption edges. Since the complex anoma-

lous scattering factors, f ′(λ) + i f ′′(λ), are independent of the spatial frequency, q, the

Friedel symmetry (Equation (2.15)) is broken, and the differences between the Fourier

magnitudes of the Friedel pairs offer extra information for phase determination.

When a reasonably large fraction of the contrast in a crystal is known, molecular

replacement can be used to estimate the phases. The known structure is oriented and

translated to fit its autocorrelation function with that derived from the experimental data,

from which one can derive the phases that are hopefully close to the true values. Direct

methods use prior knowledge on the unknown structure to constrain the phase solution,

for example, the sparsity and non-negativity of the signals or the phase relations between

certain sets of Fourier components. The success of direct methods usually requires

atomic resolution data. The relation between data quality and the hardness of phase

retrieval was recently studied in Ref. [18].
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Phasing for aperiodic samples

The theoretical foundation of phase retrieval for non-crystalline samples traces back to

an observation by David Sayre in 1952: structure determination for isolated objects

would be possible if the intensity measurement could be sufficiently oversampled [64].

This idea has spawned the technique of coherent X-ray diffraction imaging (CXDI),

where phases are retrieved from the oversampled intensity measurement and the prior

knowledge of the sample size and shape.

Consider a 1D band-limited signal, f (x), which is non-zero in the interval x ∈

(0, `) and zero elsewhere. From Shannon’s sampling theorem [65], f (x) can be fully

represented without aliasing by its Fourier components, f̂ (qk ):

f (x) =

√
2π
`

∞∑
k=−∞

f̂ (qk ) eiqk x, (2.27)

where qk = k∆q = k (2π/`). For an X-ray diffraction measurement with object size

L, the Fourier components, f̂ (qk ), correspond to the Fourier intensities, | ρ̂(q) |2, and

the signal, f (x), corresponds to the inverse Fourier transform of | ρ̂(q) |2, the signal

autocorrelation

a(x) = a(−x) =
∫

dx′ ρ(x′)ρ(x′ + x), (2.28)

which has band limit, or support size, ` = 2L. Therefore, a(x) can be uniquely

represented if the intensity measurement is sampled at a rate finer than

∆q =
π

L
, (2.29)

and the electron density, ρ(x), is reconstructed given a(x) as well as prior information

on ρ(x).

The difficulty of a phase retrieval problem can be further quantified by the ratio of

the number of constraints provided by the signal autocorrelation to the number of free
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variables in the signal [19]. This quantity — the constraint ratio — is defined as

Ω =
1
2

Aauto
AS

, (2.30)

where Aauto and AS denote the support sizes of a(x) and ρ(x), respectively, and the

factor of 1/2 is due to the centrosymmetry of a(x). When Ω > 1, the reconstruction is

possible without any additional information. In dimensions higher than 1D, Ω is always

no less than 2 as long as the intensity measurements are oversampled at a rate finer

than ∆q defined in Equation (2.29). The definition of Ω immediately suggests: (1) The

oversampling condition in Equation (2.29) can be slightly relaxed as long as Aauto > 2AS

to constrain the phase retrieval problem. (2) Increasing the oversampling rate higher

than ∆q does not provide extra information. Finally, we note that Ω = 1/2 for crystals

since the signal autocorrelation has the same support size as the unit cell. This again

shows that phase retrieval for crystallographic data is under-constrained by a factor of 2.

The modern phase retrieval algorithms commonly used in CXDI are close descen-

dants of the hybrid-input-output (HIO) algorithm [22] and can be generalized by the

difference map algorithm [17]. This class of algorithms searches for solutions that sat-

isfy two sets of constraints, which are enforced by the projections, P1(ρ) and P2(ρ). In

the context of CXDI, P1(ρ) modifies the vector variable, ρ, through the Fourier synthesis

using the measured Fourier intensities, I (q):

P1(ρ) = F −1{ ρ̃}, (2.31)

where

ρ̃(q) =



√
I (q)

F {ρ}(q)
|F {ρ}(q) |

, if I (q) is measured

F {ρ}(q), otherwise
. (2.32)

Here F and F −1 denote the fast Fourier transform (FFT) and its inverse. The other

16



projection, P2(ρ), enforces the support and non-negativity constraints:

P2(ρ) =



ρ(x), if x ∈ S and ρ(x) > 0

0, otherwise
, (2.33)

where S represents the known support of the isolated sample.

The solution search in the difference map algorithm is done iteratively through the

mapping:

ρ→ ρ′ = ρ + β
(
P1( f2(ρ)) − P2( f1(ρ))

)
, (2.34)

where

f2(ρ) = P2(ρ) + β−1(P2(ρ) − ρ) (2.35)

f1(ρ) = P1(ρ) − β−1(P1(ρ) − ρ). (2.36)

The parameter, β, is usually set as 1 (or -1), but its optimal value should be determined

through experimentation. The convergence of the search is monitored by the norm of

the difference between the two projections:

∆ = | |P1( f2(ρ)) − P2( f1(ρ)) | |2. (2.37)

When the search converges to a fixed point, ρ∗, we have ∆ ≈ 0, and the electron density

of the sample is given by either P1( f2(ρ∗)) or P2( f1(ρ∗)), a common element of the two

constraint sets.

2.3 EMC algorithm

As discussed in Section 2.2, a measured diffraction pattern gives information on an

Ewald-sphere slice of the 3D Fourier intensities, | ρ̂(q) |2. In order to resolve the 3D

structure of the sample, multiple diffraction patterns have to be recorded at different

sample orientations and merged in reciprocal space. In the case of tomography, the
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sample is rotated about a defined axis, and the recorded diffraction patterns can be as-

sembled in reciprocal space at the known rotation angles. However, radiation damage

sets a limit on the maximum tolerable dose, Dmax, of the sample. For frozen-hydrated

biological samples, Howells and coworkers show that Dmax is proportional to the res-

olution (a length), while the needed dose scales with the inverse fourth power of the

resolution [35]. This limit precludes the collection of multiple diffraction patterns from

a single small biological particle such as viruses or protein microcrystals.

If many identical copies of a biological particle are available1, radiation dose can be

distributed by taking just one snapshot of each copy at some particle orientation under the

safe dose. The diffraction patterns are subsequently assembled to form the 3D Fourier

intensities, | ρ̂(q) |2. This idea of ‘single-particle analysis’ is the basis for single-particle

cryoEM [23], single particle X-ray imaging [54] and serial crystallography [11].

The smallness of the biological particles makes it challenging to control the particle

orientations relative to the X-ray beam. Since the number of diffracted photons is

proportional to the total number of electrons in a particle, the resulting diffraction

patterns are expected to be noisy. The EMC algorithm [46] is designed to assemble the

noisy, unoriented diffraction patterns in reciprocal space and reconstruct the 3D Fourier

intensities, | ρ̂(q) |2. The following sections describe the details of the algorithm and

discuss several variants for different experimental conditions.

2.3.1 Standard EMC algorithm

Given a set of noisy diffraction patterns, K , with unmeasured particle orientations, Ω,

the EMC algorithm seeks to construct a consistent 3D intensity model, W , by itera-

1For protein microcrystals, this assumption means the constituent protein molecules have the same
conformations and the unit cell parameters are identical across all the crystals.

18



tively maximizing the data likelihood function, p(K |W ). However, the maximization

of p(K |W ) is usually intractable due to the missing information of Ω. By contrast,

maximizing the complete likelihood function, p(K,Ω|W ), is more straightforward, but

requires knowing the particle orientation in each data frame. This observation motivates

a way to reconstruct W by alternately updating the estimates of W and Ω by fixing the

values of one or the other until convergence.

The expectation-maximization algorithm [15] offers an explicit formalism to update

W by iteratively maximizing an expected log-likelihood function

Q(W ′) =
∑

K

∫
dΩ p(Ω|K,W ) log p(K,Ω|W ′). (2.38)

It can be shown that

log p(K |W ′) − log p(K |W ) ≥ Q(W ′) −Q(W ), (2.39)

so the data likelihood function is guaranteed to be non-decreasing bymaximizingQ(W ′).

In the context of the EMC algorithm, expectation maximization represents the update

rule on the intensity model: W → W ′.

Consider an intensity reconstruction problem with Mdata data frames collected from

individual biological particles at random orientation. Each data frame, k, measures

Mpix discrete photon counts, Kik , i = 1, 2, . . . , Mpix. The photon counts are assumed

to be sampled from Poisson distributions. The rotations are sampled by the 600-cell

subdivision method [46], with the sampling rate specified by the order, n = 1, 2, . . . .

The angular resolution is given by δθ = 0.944/n, and Mrot = 10(5n3 + n) denotes the

number of discrete rotation samples (labeled by j). Let W (q) be the time-integrated 3D

intensity defined by Equation (2.17), where q represents the spatial frequencies. The

EMC algorithm iteratively reconstructs W (q) to be consistent with the data frames.

Each iteration of the EMC algorithm consists of three steps: expand (E), maximize
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(M) and compress (C). The E-step calculates the mean photon numbers measured by the

pixels given the current 3D intensity estimate, W , at different orientations. When the

biological particle has orientation j, the intensity value sampled by pixel i is given by

linear interpolation

Wi j =
∑

p
f (p − R j · qi)W (p), (2.40)

where f (·) is the interpolation weight, p denotes the 3D grid points in reciprocal space,

R j is the rotation matrix that brings the lab frame to the particle reference frame at

particle orientation j, and qi is the spatial frequency associated with pixel i in the lab

frame. In the original EMC paper, the pixel-wise polarization factors and solid angles

are assumed to be constant at fixed |q|, and they are absorbed into the definition of

W (q). Therefore, Wi j represents the mean photon number measured by pixel i at particle

orientation j.

The M-step updates the tomographic representation, Wi j , of the 3D intensity model

by maximizing the expected log-likelihood function, Q(W ′), defined by Equation (2.38).

The definition of Q(W ′) assigns a provisional probability of orientations conditional

on the current intensity model, p(Ω|K,W ), to the complete log-likelihood function,

log p(K,Ω|W ′), for each data frame. From Bayes’ rule, p(Ω|K,W ) can be expressed by

p(Ω|K,W ) =
p(K |Ω,W )p(Ω|W )∫

dΩ p(K |Ω,W )p(Ω|W )
, (2.41)

which is the normalized likelihood function p(K |Ω,W ), weighted by a prior orientation

distribution p(Ω|W ). In the implementation of the EMC algorithm, p(Ω|K,W ) and

p(K |Ω,W ) have the discrete representations Pj k (W ) and R j k (W ) for data frame k,

respectively. The probability R j k (W ) is the product of the Poisson probabilities of the

photon count measured by each detector pixel:

R j k (W ) =
∏

i

W Kik

i j exp(−Wi j )

Kik!
. (2.42)
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Since the particle orientations are generally assumed to be uniformly distributed, we

represent the prior orientation distribution, p(Ω|W ), by w j , which is the fraction of

the continuous rotation group assigned to rotation sample j. Finally, the conditional

probability Pj k (W ) is given by

Pj k (W ) =
w j R j k (W )∑
j ′ w j ′R j ′k (W )

. (2.43)

The expected log-likelihood function defined in Equation (2.38) can be rewritten as

Q(W ′) =
∑

K

∫
dΩ

(
p(Ω|K,W ) log p(K |Ω,W ′) + p(Ω|K,W ) log p(Ω|W ′)

)
. (2.44)

Since the prior orientation distribution, p(Ω|W ′), is generally independent of the intensity

model, W ′, the second term in Equation (2.44) can be neglected. In the representation

of discrete variables, we have

Q(W ′) =
∑

j

∑
k

Pj k (W )
(∑

i

Kik log W ′i j −W ′i j

)
, (2.45)

where an irrelevant constant is again neglected. Maximizing Q(W ′) with respect to W ′i j ,

we obtain the update rule

Wi j → W ′i j =

∑
k Pj k (W )Kik∑

k Pj k (W )
, (2.46)

which can be interpreted as the average of the photon counts, Kik , weighted by the

conditional probabilities, Pj k (W ), over all data frames.

The C-step enforces consistency between the updated mean photon numbers, W ′i j , by

mapping them back to reciprocal space to form a new 3D intensity model, W ′(q). Recall

that W ′i j is the intensity value sampled from W ′(q) by pixel i at particle orientation j.

Therefore, the mapping is given by the interpolation

W ′(p) =

∑
i
∑

j f (p − R j · qi)W ′i j∑
i
∑

j f (p − R j · qi)
. (2.47)
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Since each voxel ofW ′(q) is sampled bymultiple pairs of (qi,R j ), theC-step improves the

signal-to-noise ratio (SNR) of the voxel values by averaging over W ′i j . The construction

of W ′(q) completes an iteration of the EMC algorithm, and the iterations continue until

the 3D intensity model converges: W ' W ′.

2.3.2 Different likelihood models

In Section 2.3.1, we assumed that the signal measured by each pixel follows Poisson

statistics, and derived the explicit expression of R j k (W ), the discrete representation

of p(K |Ω,W ), in Equation (2.42). In fact, the EMC algorithm is flexible enough to

accommodate different experimental conditions by changing the definitions of R j k (W ).

This section gives a short review of some of these experimental conditions and the

appropriate likelihood models used by the EMC algorithm in data analysis.

Fluctuating fluence

In many real-world applications, the signals measured in each diffraction pattern, k,

fluctuate by an overall scale factor, φk , for example, the shot-to-shot fluence fluctuation

at XFELs, or the volumes of different crystals in serial crystallography. Assume that pi is

the product of the polarization factor and solid angle of pixel i. Given sample orientation

j, the photon count, Kik , is the Poisson sample of the mean photon number

W̃i j k = piφkWi j . (2.48)

Accordingly, the expected log-likelihood function can be rewritten as

Q(W ′, φ′) =
∑

j

∑
k

Pj k (W, φk )
(∑

i

Kik log(piφ
′
kW ′i j ) − (piφ

′
kW ′i j )

)
, (2.49)
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where

Pj k (W, φk ) =
w j

∏
i W̃ Kik

i j k exp(−W̃i j k )∑
j ′ w j ′

∏
i W̃ Kik

i j ′k exp(−W̃i j ′k )
. (2.50)

When the values of φk can be estimated heuristically, the tomogram values are

updated in the M-step simply by maximizing Q(W ′, φ) with respect to W ′i j :

Wi j → W ′i j =

∑
k Pj k (W, φk )Kik/pi∑

k Pj k (W, φk )φk
. (2.51)

In the C-step, the tomograms, W ′i j , are weighted by
∑

k Pj k (W, φk )φk to reflect the

frequency of orientation j populated by the data frames with weight corresponding to

the signal strength of the frame:

W ′(p) =

∑
i
∑

j f (p − R j · qi)
( ∑

k Pj k (W, φk )φk

)
W ′i j∑

i
∑

j f (p − R j · qi)
( ∑

k Pj k (W, φk )φk

) . (2.52)

Often the values of φk have to be reconstructed along with the 3D intensity model,

W . However, simultaneous updates for W ′ and φ′ are nontrivial because they appear as

products in Q(W ′, φ′). We instead update the models by maximizing Q(W ′, φ′) with one

or the other parameter, W ′ or φ′, held fixed in each EMC iteration [45], which gives the

update rules

Wi j → W ′i j =

∑
k Pj k (W, φk )Kik/pi∑

k Pj k (W, φk )φk
(2.53)

φk → φ′k =

∑
j Pj k (W, φk )

∑
i Kik∑

j Pj k (W, φk )
∑

i piWi j
. (2.54)

If the updatedmodel isW ′ in an iteration, we implement the C-step using Equation (2.52);

otherwise, the current model, φ, is replaced by φ′ to start the next iteration.

Extraneous background

Amore realistic signal model considers each measured diffraction pattern as the Poisson

sample of the incoherent sum of diffuse background and the sample diffraction at some
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orientation. Specifically, the mean photon number, W̃i j k , is modeled as

W̃i j k = bik + piφkWi j, (2.55)

where bik is the background estimate at pixel i in data frame k. With this signal model,

the expected log-likelihhod function, Q(W ′, φ′), is given by

Q(W ′, φ′) =
∑

j

∑
k

Pj k (W, φk )
(∑

i

Kik log(bik + piφ
′
kW ′i j )− (bik + piφ

′
kW ′i j )

)
, (2.56)

where

Pj k (W, φk ) =
w j

∏
i W̃ Kik

i j k exp(−W̃i j k )∑
j ′ w j ′

∏
i W̃ Kik

i j ′k exp(−W̃i j ′k )
. (2.57)

As discussed above, we update the models in the M-step by maximizing Q(W ′, φ′)

with one or the other parameter, W ′ or φ′, held fixed in each EMC iteration. This

alternating update rule converts the original problem into two sets of minimizations

W ′i j = arg min
W ′

i j

∑
k

Pj k (W, φk )
[
(bik + piφkW ′i j ) − Kik log(bik + piφkW ′i j )

]
(2.58)

φ′k = arg min
φ′
k

∑
i j

Pj k (W, φk )
[
(bik + piφ

′
kWi j ) − Kik log(bik + piφ

′
kWi j )

]
. (2.59)

When the quantities bik , pi, φk and Wi j are all positive, which is strictly enforced for

bik and pi, the functions to be minimized in Equations (2.58) and (2.59) are convex,

and the minima can be readily found by a line search, i.e., a simple numerical algorithm

to locate minima in 1D [60]. We also impose a non-negativity constraint on φ′k when

solving Equation (2.59). On the other hand, W ′i j are allowed to be negative when solving

Equation (2.58) as a result of noise, and the summation in Equation (2.59) only sums

over the pairs (i, j) where the values ofWi j are non-negative. In the iterations that update

W ′, the new 3D intensity model, W ′(p), is constructed in the C-step using Equation

(2.52); otherwise, the current model, φ, is replaced by φ′ to start the next iteration.
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Gaussian noise model

Gaussian noise models were adopted in the early applications of the EMC algorithm

in XFEL experiments [16, 45], possibly because of the detector readout noise or the

uncertainties introduced by background subtraction. Similar to the original EMC paper,

the corrections of the polarization factors and solid angles were neglected. Given the

mean photon numbers, Wi j , the likelihood for data frame k to measure the photon counts,

Kik , is based on a Gaussian model:

R j k (W, φk ) ∝
∏

i

exp(−
(Kik/φk −Wi j )2

2σ2
i j

), (2.60)

where σi j denotes the standard deviation of each Gaussian distribution, which was

estimated heuristically in Ref. [16] and [45]. The expected log-likelihood function is

defined by (apart from an irrelevant constant)2

Q(W ′, φ′) =
∑

j

∑
k

Pj k (W, φk )
(
−

∑
i

(Kik/φ
′
k −W ′i j )

2

2σ2
i j

)
, (2.61)

where

Pj k (W, φk ) =
w j R j k (W, φk )∑
j ′ w j ′R j ′k (W, φk )

. (2.62)

Maximizing Q(W ′, φ′) with one or the other parameter, W ′ or φ′, held fixed in each

EMC iteration, we obtain the alternating update rules:

Wi j → W ′i j =

∑
k Pj k (W, φk )Kik/φk∑

k Pj k (W, φk )
(2.63)

φk → φ′k =

∑
j Pj k (W, φk )

∑
i K2

ik/σ
2
i j∑

j Pj k (W, φk )
∑

i KikWi j/σ
2
i j

. (2.64)

2In Ref. [45], the function Q(W ′, φ′) was instead defined as

Q(W ′, φ′) =
∑
j

∑
k

w jRjk (W, φk ) log Rjk (W ′, φ′k ),

with σi j replaced by a global parameter, σ, in Equation (2.60). Under the approximation that each data
frame, k, has similar mean likelihood value,

∑
j w jRjk (W, φk ), the update rules in Equations (2.63) and

(2.64) reduce to those generated by maximizing Q(W ′, φ′) in this definition.
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In the iterations that updateW ′, the C-step is implemented by Equation (2.52); otherwise,

the current model, φ, is replaced by φ′ to start the next iteration.

2.3.3 Local update scheme

The most time-intensive part of the EMC algorithm is the calculation of the conditional

probabilities, Pj k (W, φ), which has the number of operations proportional to the number

of data frames, Mdata, the number of rotation samples, Mrot, and the number of pixels,

Mpix. This makes the reconstruction of high-resolution features especially challenging

due to the scaling

MrotMpix ∝ q5
max, (2.65)

where qmax denotes the maximum spatial frequency magnitude. In this section, we

describe an update scheme that exploits a special property of the EMC algorithm to

speed up the reconstruction at high resolution [41].

Before elaborating on the details, we first review how an EMC reconstruction con-

verges in qualitative terms. Since the diffraction signal strength in general decays with

the increase of the spatial frequency magnitude, q, the features at low-q values are first

reconstructed. These low-q features give each data frame a strong preference for certain

orientations, and the 3D intensity model, W , is refined about these probable orientations

to resolve features at higher resolution. With improved SNR inW , the convergence grad-

ually proceeds from low-q to high-q values. This observation shows that the intensity

reconstruction has the property of locality in orientations: each data frame, k, has high

probabilities, Pj k , only at a handful of orientations favored by the low-q features; on

the other hand, the other orientations with negligible probabilities hardly contribute to

the refinement of W . Therefore, the computation time can be significantly reduced by
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restricting the search to the vicinity of the probable orientations on a per frame basis.

The computing scheme that we call the local update scheme takes advantage of the

locality in orientations to speed up the convergence of the EMC reconstruction. Given a

converged 3D intensity model, W , with a coarse rotation sampling of order nc (labeled

by jc) and the conditional probabilities, Pjck (W, φk ), for each data frame, k, we first

represent the probable orientation list by a binary matrix

B jck =




1, if Pjck (W, φk ) > ε p

0, otherwise
, (2.66)

where ε p is a predefined threshold. Our aim is to refine W using a fine rotation sampling

of order n f (labeled by j f ) without calculating all the elements of Pj f k (W, φk ). For each

coarse rotation sample, jc, we define its neighborhood as the subset of rotation space

that is closer to jc than any other samples, and assign the fine rotation samples, j f , that

lie in this subset as the neighbors of jc. This mapping is stored as a matrix

Cjc j f =




1, if j f is a neighbor of jc

0, otherwise
. (2.67)

Subsequently, we refine W in the usual way of the EMC algorithm, with the exception

that only the entries of Pj f k (W, φk ) that satisfy the conditions B jck = 1 and Cjc j f = 1 are

calculated while the others are set to zero. This requirement restricts the calculation of

Pj f k (W, φk ) to the neighbors of the probable coarse rotation samples of each data frame.

Restricting the search in orientations significantly speeds up the EMC reconstruction.

Assume that each data frame on average has Np coarse rotation samples with non-

negligible probabilities. Since the sampling density of rotations is proportional to the

cube of the order, n, the local update scheme on average calculates Npn3
f /n

3
c entries of

Pj f k (W, φk ) per frame. This speed-up corresponds to a factor of n3
c/Np. Moreover, the

matrices B jck and Cjc j f are both sparse, and barely add any burden to the memory usage.
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The idea of the local update scheme is similar to the sparse update scheme proposed

by Neal & Hinton [53], which speeds up the expectation-maximization algorithm by

leaving out the improbable values of the searched parameters in most of the iterations

and only updating them at a much lower rate. The only difference between the two

schemes is the specific property of locality in orientations in our intensity reconstruction

application, which allows us to search in a finer grid about the probable coarse rotation

samples to refineW at high resolution. Nonetheless, we need to stress that the only reason

to adopt the local update scheme is to speed up the reconstruction at high resolution.

The likelihood function maximized with the local update restriction cannot exceed its

counterpart when the whole rotation group is explored.

2.3.4 Memory-efficient parallel implementation

The memory usage of the EMC algorithm is dominated by the conditional probabilities,

Pj k (W, φk ), and the tomogram values, Wi j and W ′i j , which have sizes of Mrot × Mdata

and Mpix × Mrot, respectively. Since Mrot ∝ q3
max and Mpix ∝ q2

max, the required memory

rapidly becomes prohibitive even with modest angular resolution [3]. In this section, we

introduce a parallel implementation of the EMC algorithm that allows high-resolution

reconstructions with reasonable memory usage.

We first notice that each data frame only has non-negligible probabilities at a few

orientations, unless the signal level is as weak as just several photons per frame. There-

fore, the entries of Pj k (W, φk ) can be stored as a sparse matrix to save memory. In

our implementation, we distribute blocks of data frames (ranges in k index) to different

processors, each of which holds the same copies of models, W and φ, and the algorithm

strides through the Mrot rotations in steps of size Mstep to calculate Wi j and R j k (W, φk ).
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Each processor dynamically updates the value of max j w j R j k (W, φk ) for each data frame

when walking through all the orientations. From the inequality

Pj k (W, φk ) =
w j R j k (W, φk )∑
j ′ w j ′R j ′k (W, φk )

≤
w j R j k (W, φk )

max j ′ w j ′R j ′k (W, φk )
, (2.68)

the entries of w j R j k (W, φk ) are saved only when

w j R j k (W, φk )
max j ′ w j ′R j ′k (W, φk )

> ε p, (2.69)

where ε p is a predefined threshold. This condition is checked for all the saved entries

every time the value max j w j R j k (W, φk ) is updated. After going through all the rotation

samples, the algorithm calculates the significant values of Pj k (W, φk ) by normalizing

the saved entries of w j R j k (W, φk ) over orientations. Subsequently, we update W ′i j also

in steps of size Mstep over all the orientations. The values of W ′i j are mapped back to the

updated 3D intensity model, W ′, after each step.

In our implementation the memory usage is dominated by Wi j (W ′i j), and scales as

Nproc × Mpix × Mstep, where Nproc denotes the number of processors. This new memory

scaling is only proportional to q2
max, and can in practice limit the total memory usage to

only tens to hundreds of gigabytes (GB) even with very high angular resolution.
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CHAPTER 3

SINGLE PARTICLE IMAGING

A desirable goal in structural biology using XFEL facilities is to image the 3D structure

of biological macromolecules in near-physiological conditions. In SPI experiments,

diffraction patterns are collected from many reasonably identical copies of a bioparticle,

delivered in random orientations into the pulsed X-ray beam. The femtoseconds long

pulse width enables the scattering process to outrun the structural destruction by the

intense pulses [54]. The 3D structure of the bioparticle is then solved by phasing the

3D intensity volume assembled from the unoriented diffraction patterns in reciprocal

space. Although still in the development stage, successful applications of SPI at sub-

nanometer resolution will offer an unparalleled tool to probe the dynamics of biological

macromolecules [68]. In order to resolve the technical problems that challenge SPI, an

international collaboration called the SPI Initiative formed in 2015 [1]. The collaboration

has carried out a few R&D experiments at the Linac Coherent Light Source (LCLS),

and made considerable progress in experimental technology. Here we describe our

contribution from the data analysis side.

3.1 Sample selection

The goal of the first few R&D experiments was to optimize the experimental conditions

in SPI. The ideal test samples that help achieve this goal should at least have the following

characteristics:

• Available in large quantities: In these early experiments, we should expect the

mean hit rate for a particle to be intercepted by an X-ray pulse to be just a few

percent or lower, so a large quantity of sample is needed.
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• Reproducible structure to avoid the complication of sample heterogeneity.

• Known structure to validate the structure solutions.

• Ease of orientation reconstruction.

By focusing on the last point, we discuss our evaluation of the proposed nine different

bioparticles. In particular, we ranked the hardness to orient the diffraction patterns of

each bioparticle through computer simulation.

3.1.1 Diffraction pattern simulation

The proposed nine bioparticles for the first few SPI experiments were:

1. CalS11 methyltransferase fusion protein (PDB entry: 3TOS)

2. KLH1 di-decamer (PDB entry: 4BED [28])

3. Yeast RNA Polymerase II (PDB entry: 1WCM [2])

4. MS2 phage empty capsid (PDB entry: 1ZDI [74])

5. Tomato bushy stunt virus (TBSV) (PDB entry: 2TBV [34])

6. Four-layer tobacco mosaic virus (TMV) (PDB entry: 1EI7 [8])

7. DNA origami (PDB entry: 4V5X [6])

8. Coliphage PR772 virus (no available structure)

9. Rice dwarf virus (RDV) (PDB entry: 1UF2 [51])

These particles have sizes ranging from 10 to 70 nm, and we would like to simulate

the diffraction patterns from the atomic coordinates in the PDB files. Consider an SPI

experiment with X-ray wavelength λ, sample size L and sample-to-detector distance D.
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The diffraction patterns are collected by a pixelated detector of squared pixel size d. We

define R as the distance (in pixels) from the beam incidence point to the edge of the

detector, rounded to the nearest integer, and neglect the pixels outside this radius. The

maximum spatial frequency magnitude measured by the detector is then given by

qmax =
2π
λ
· 2 sin

θ

2
, (3.1)

where θ = tan−1(Rd/D) is the maximum scattering angle. The pixels within radius Rstop

are blocked to protect the detector from direct beam illumination.

From Shannon’s sampling theorem [65], a 1D band-limited function f̂ (q), where

f̂ (q) = 0 when |q | > qmax, can be fully represented by its inverse Fourier transform,

f (x), sampled at points xn:

f̂ (q) =
√
π

2
1

qmax

∞∑
n=−∞

f (xn) e−iqxn, (3.2)

where xn = n∆x = n(π/qmax). In our SPI simulation, the Fourier components are

band-limited by |q| < qmax because of the finite detector size, which indicates that we

have to sample the 3D contrasts in real space at a rate of

∆x =
π

qmax
. (3.3)

This value is also called the half-period resolution.

The 3D contrasts were constructed as follows: After binning the coordinates of the

non-hydrogen atoms in a PDB file on a cubic grid of voxel size 2 Å, a discrete Fourier

transform was applied to the grid and truncated at the size 2r + 1, where each atom

was weighted by its atomic number and r was given by (L/∆x − 1)/2 rounded up to

the nearest integer. The truncated Fourier transform was then multiplied by a low-pass

Gaussian filter

G(q) = exp(−2.3 |q|2/q2
max), (3.4)
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where |q| was calculated by the distance (in voxels) from the central voxel multiplied by

qmax/r . This filter models the decay of Fourier magnitudes due to the blurring of atomic

positions over the X-ray pulse duration [46]. The result was inverse Fourier transformed

to give the 3D contrast in real space, supported on a cubic grid of length 2r + 1.

The diffraction patterns were simulated by the Poisson samples of the mean photon

numbers, piWi j∆Ωi, where pi and∆Ωi denote the polarization and solid angle corrections

for pixel i, respectively. The incident X-ray was assumed to be horizontally linear

polarized. The number, Wi j , is given by the interpolation in Equation (2.40), where j

indexes the bioparticle orientations and W (q) is the time-integrated intensity defined in

Equation (2.17). After embedding the 3D contrasts constructed above on a larger cubic

grid of size 2R + 1, the squared Fourier magnitudes, | ρ̂(q) |2, were computed. Using

the experimental parameters given in Table 3.1, we generated diffraction patterns with

qmax = 0.4 Å−1, which corresponds to ∆x ≈ 8 Å.

Photon energy (keV) 6
Incident photon density, Jinc∆t (photons · µm−2 · pulse−1) 1013

Detector distance, D (mm) 417
Detector radius, R (pixel) 500
Beamstop radius, Rstop (pixel) 20
Pixel size, d (µm) 110

Table 3.1: Parameters for the SPI simulations.

3.1.2 SNR of speckles

The noise in SPI mainly consists of two parts — the statistical noise due to Poisson

statistics and the systematic noise due to background scattering. We first consider

two extreme cases of background noise. In one extreme, the background is strong and

catches up with the particle signal at some spatial frequency magnitude, qmax. To achieve
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the highest possible resolution, the sample that scatters the strongest signal should be

selected, which favors the largest particle in our list (see Section 3.1.1), RDV.

In the other extreme, the background can be reliably suppressed so that it does not

compete with the particle signal. This can be done by placing an aperture downstream

of the sample to block the parasitic scattering from the beamline optics [78]. If the back-

ground stays well below the particle signal, the achievable resolution will be determined

by the number of particle diffraction patterns collected in the experiment. In this section,

we will calculate the SNR of the proposed samples in this hit-rate limited regime.

After averaging over particle orientations, the number density of photons, n(q),

scattered by spatial frequency magnitude, q, into reciprocal space volume element, d3q,

scales with the particle volume, V , and a fall-off function, s(q):

n(q) ∝ s(q)V . (3.5)

Here we assume that the incident beam fluence is fixed. For non-crystalline samples, the

Fourier intensities consist of many small smooth regions known as speckles. The speckle

volume is roughly homogeneous and inversely proportional to the sample volume: Ṽ ∝

1/V . Suppose we succeeded in collecting H particle diffraction patterns and that they

were correctly classified and combined to form a 3D intensity map. The number of

photons that contribute to a speckle at q is given by

N (q) ∝ n(q)Ṽ H ∝ s(q)H, (3.6)

and we can readily obtain the q-dependence of the SNR from Poisson statistics:

SN R(q) ∝
√

N (q) ∝
√

s(q)H . (3.7)

The resolution cutoff, qmax, is therefore determined by the equation

SN R(qmax) ∝
√

s(qmax)H, (3.8)
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Figure 3.1: Resolution dependent SNR of speckles for the proposed SPI samples. Each
dataset has 105 hits and is assumed to be correctly merged in reciprocal space. By setting
SNR = 20 as a general criterion, the resolution limit is ∆x = 14 Å (qmax = 0.22 Å−1).

when the SNR falls below a threshold value. Because the fall-off function, s(q), is

characteristic of the material (biomolecule in our case) and independent of particle size,

we expect the achievable resolution in the hit-rate limited regime to only depend on the

number of particle hits, H .

Using the experimental parameters in Table 3.1, we simulated H = 105 randomly

oriented diffraction patterns of each proposed sample except for PR772 virus to calculate

the number density of photons, n(q). We used Ṽ = (2π)3/V for the speckle volume, and

defined the resolution by requiring the SNR of the outermost speckles,

SN R(q) =
√

n(q)Ṽ H, (3.9)

to be above some lower limit. The results are shown in Figure 3.1. As argued above, the

SNR of speckles is not a discriminative criterion for sample selection. By setting the

limit as SNR = 20, the achievable half-period resolution is ∆x = π/qmax ≈ 14 Å.
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3.1.3 Hardness of orientation reconstruction

In the discussion above we did not consider the process of merging diffraction patterns,

but only asked that the final 3D intensity map should have sufficient SNR for convergence

to be possible at the highest resolution. This overlooks the very daunting problem that

initially, before we have anything resembling speckles, we have very poor information

for assigning even tentative orientations to the diffraction patterns. For the purpose of

sample selection, we would like to know if the diffraction patterns of some samples

merge more easily than others. Before answering this question, it is helpful to first

understand how the diffraction patterns are merged in qualitative terms.

The diffraction signal drops rapidly with the increase of q, so the small-q speckles,

which generally have higher SNR, are reconstructed first. Due to their larger angu-

lar sizes, the early-stage orientation assignment tends to have larger errors. With the

improved SNR in the low-q speckles, the orientations become more accurate and the

refinement of the 3D intensity map gradually proceeds to reconstruct the high-q speckles.

The qualitative description of orientation reconstruction suggests two factors that

determine the hardness of merging diffraction patterns. Clearly the angular variation of

the intensity is one of them: greater variation translates to greater angular information.

The other factor is the signal strength of the diffraction patterns, because the orientational

information is degraded by the Poisson noise of photon detection. The combined effect of

these factors is captured by a form ofmutual information—ameasure of the orientational

information gained, on average, by the detection of photons.

Consider photons detected in resolution shell q. Let w be the mean photon number

measured by a pixel in this resolution shell for some particle orientation. The angular

average, 〈w〉, gives the average photon number detected per pixel in this resolution shell.
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Using these two quantities, we can construct the mutual information (derived in the end

of this section)

Ω = 〈w〉

〈
f
(
w

〈w〉

)〉
, (3.10)

where f (x) = x log x − x + 1. The quantity Ω represents the information gained,

per pixel, on the angular distribution of intensity in resolution shell q by measuring

photons. Dividing Ω by log 2 expresses this information in units of bits. If there are

m(q)dq detector pixels between resolution q and q + dq, then on average we obtain

Ω(q)m(q)dq/ log 2 bits of angular information from the photons detected in this shell.

We can get an intuitive sense of the expression for Ω by a simple approximation.

Suppose that the angular variation of w is small, as in the case of an icosahedral virus at

small q. In that case x = w/ 〈w〉 ≈ 1 and we can expand f (x) for x near 1:

f (x) ≈
1
2

(x − 1)2. (3.11)

Using this approximation, we obtain

Ω =
1
2
〈w〉−1 (w − 〈w〉)2, (3.12)

which represents the angular variance of the intensity with an overall scale that goes as

the mean intensity, 〈w〉.

In Figure 3.2 we have plotted Ω(q) as a function of resolution for all the proposed

samples except for PR772 virus. Perhaps contrary to expectations, one of the best samples

by this metric is an icosahedral virus—RDV. The overall scale of the intensity more than

makes up for the low angular variation. What appears as another promising candidate

is KLH1 di-decamer, in this case thanks to its more pronounced angular variation. An

argument can be made for TBSV or DNA origami, but both of these are deficient in

information relative to the other two at small q, where data merging begins.
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Figure 3.2: Mutual information measure of hardness of orientation reconstruction as a
function of resolution for the proposed SPI samples. The orientation information gain
per diffraction pattern for the samples in the top figure is about one order of magnitude
higher than that for the samples in the bottom figure.

A related metric is the total orientational information one measures over all the

resolution shells up to the maximum resolution q:

Ωtotal(q) =
∫ q

0
Ω(q′)m(q′)dq′, (3.13)
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Figure 3.3: Integrated orientational information over resolution in a diffraction pattern
for the four top candidates by the Ω metric.

where m(q)dq is the number of detector pixels between resolutions q and q + dq. This

quantity is plotted in Figure 3.3 for the four top candidates by the Ω metric. We can see

that RDV and KLH1 are again at the top, and most of the information comes from very

small q. To put the numbers on the vertical axis in perspective, we note that resolving

a single angle to one degree requires about 8 bits of information, so orienting a single

frame (three Euler angles) requires on the order of 25 bits. Figure 3.3 shows that this

quantity of information would be absent if the beamstop eliminated the sharp initial rise

of Ωtotal at small q.

To summarize, we advocated RDV and KLH1 from a theoretical viewpoint. Their

dominance in the metrics of Ω and Ωtotal shows that the diffraction patterns of these two

particles carry higher information content — a sign for easier orientation reconstruction.
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Derivation of mutual information Ω

Consider the joint probability of two random variables: K , the photon count measured

by a particular pixel, and θ, the angular position1 in the resolution shell that the pixel is

measuring for some random orientation of the particle. The conditional probability, of

K being measured given a particular θ, is

p(K |θ) =



w(θ), K = 1

1 − w(θ), K = 0
, (3.14)

where w(θ) is the mean photon number measured by the pixel. We are taking the

w(θ) � 1 limit of the Poisson distribution in these formulae, a valid approximation for

all the samples under consideration. The joint distribution, p(K, θ) = p(K |θ)p(θ), is

proportional to the conditional distribution above, since the orientation distribution of

the particle is assumed to be uniform. The marginal distribution of the photon count is

formed by integrating the joint distribution over θ:

p(K ) =



〈w〉 , K = 1

〈1 − w〉 , K = 0
, (3.15)

where the angle brackets denote a uniform average over θ.

From the conditional distribution, we obtain the conditional entropy of photon counts

by computing the entropy of K given some θ and averaging over θ:

H (K |θ) =
〈
−p(1|θ) log p(1|θ) − p(0|θ) log p(0|θ)

〉
=

〈
−w logw − (1 − w) log(1 − w)

〉
≈

〈
w − w logw

〉
, (3.16)

where in the last line only the leading terms are kept in the limit w(θ) � 1. The entropy

1Here θ is a generic angular position index for the shell, not the polar angle.
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of the photon counts, without conditions, is obtained from the marginal distribution:

H (K ) = −p(1) log p(1) − p(0) log p(0)

= − 〈w〉 log 〈w〉 − 〈1 − w〉 log 〈1 − w〉

≈ 〈w〉 − 〈w〉 log 〈w〉 . (3.17)

The mutual information associated with our pair of random variables, K and θ, is

defined as the difference of entropies:

Ω = I (K, θ) = H (K ) − H (K |θ) (3.18)

= H (θ) − H (θ |K ). (3.19)

The second form is easiest to interpret in our context. The first term H (θ) represents the

number of bits of information2 associated with our angular resolution — the maximum

information we could hope to obtain through the measurement at one pixel. In the

w(θ) � 1 limit, however, there are only two outcomes of the measurement (K = 0

or K = 1) and consequently there is a large entropy in the possible angles that could

have produced the measurement. The number of bits (entropy) associated with this

uncertainty, H (θ |K ), gets subtracted from the number of bits in our angular resolution,

H (θ), to yield the actual number of bits of information gained by the measurement.

Substituting Equations (3.16) and (3.17) into Equation (3.18), we obtain

Ω =
〈
w logw

〉
− 〈w〉 log 〈w〉

=

〈
w log

w

〈w〉

〉
= 〈w〉

〈
w

〈w〉
log

w

〈w〉

〉
= 〈w〉

〈
w

〈w〉
log

w

〈w〉
−

w

〈w〉
+ 1

〉
2To get units of bits we need to divide Ω by log 2.
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= 〈w〉

〈
f
(
w

〈w〉

)〉
. (3.20)

3.2 Data analysis

Here we describe the results of our analysis on the data collected in two SPI experiments.

In the analysis of the first dataset, we developed a metric to measure the agreement of

the data with a known model. In the other analysis, we applied the EMC algorithm to

reconstruct the 3D intensity map, from which we solved the structure by phasing.

3.2.1 Normalized surprise function

The first dataset we analyzed [49] was taken fromRDVparticles at the CXI beamline [44]

of the LCLS in June, 2015. It was challenging to reconstruct a 3D intensity map from the

data due to the limited number of single-particle hits (175 determined by Hummingbird

[13] by counting photons in a region of interest on one of the detectors). The scarcity

of diffraction patterns was caused by the difficulty to inject the virus particles into the

100 nmwide focus of theX-ray beam. Nevertheless, the data quality can still be examined

using the known structure of RDV (PDB entry: 1UF2).

Figure 3.4 shows the diffraction patterns of one of the 175 selected single-particle

hits. The diffraction patterns were collected by two detectors arranged in tandem, where

the central hole of the front detector allows the scattered photons at low-q to pass

through and be recorded by the back detector. The incident photons had energy 7 keV,

and the detector distances were 217.4 mm and 2.4 m for the front and back detectors,

respectively. Our analysis focused on the front detector, where we used data up to the
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Figure 3.4: Diffraction patterns of a single-particle hit of RDV recorded by the front and
back detectors. Each dot represents the photon count detected by a pixel. The front and
back detectors collected about 200 and 9,000 photons in total, respectively. The regions
of beamstop and gaps on the back detector are masked out.

half-period resolution of ∆x = 6.67 Å, or a radius of 265 pixels. For the 70.8-nm sized

RDV particles, this value corresponds to a subdivision of 107 resolution elements across

the diameter of RDV.

Following the procedure described in Section 3.1.1, we simulated the 3D Fourier

intensity of RDV from the PDB file, 1UF2. Assuming Poisson statistics, we define the

surprise function S as the negative of the log-likelihood function

S(K ;Φ,Ω j ) = −
Npix∑
i=1

log
(nki

i e−ni

ki!

)
, (3.21)

where K denotes the dependence on data, with ki being the measured photon count at

pixel i, ni is the mean photon number at pixel i when the fluence value is Φ and the

RDV particle has orientation Ω j . The surprise of each frame was evaluated at different

orientations across several fluence parameters, and we assigned each data frame with the

orientation and fluence value minimizing the surprise (maximizing the log-likelihood).

To put the minimum surprise values on an absolute scale, we further ‘normalize’ the
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Figure 3.5: Front detector normalized surprise (z-score) versus back detector particle
size fits. The dashed red line indicates the diameter (70.8 nm) of RDV. The normalized
surprise function, or its z-score, measures the agreement of the data with a known model
— A data frame is ‘surprising’ given the assumed model when the absolute value of its
z-score is much greater than unity.

surprise function. We define the expectation value of the surprise function as

H (Φ,Ω j ) = −
Npix∑
i=1

∞∑
k=0

nk
i e−ni

k!
log

(nk
i e−ni

k!

)
, (3.22)

and the variance of the surprise function is given by

σ2
S (Φ,Ω j ) =

Npix∑
i=1

[ ∞∑
k=0

nk
i e−ni

k!

(
log

(nk
i e−ni

k!

))2
−

( ∞∑
k=0

nk
i e−ni

k!
log

(nk
i e−ni

k!

))2]
. (3.23)

It is notable that H (Φ,Ω j ) is exactly the entropy of the photon counts when the fluence is

Φ and the RDV particle has orientationΩ j , and H (Φ,Ω j ) andσS (Φ,Ω j ) are independent

of the data, K . The normalized surprise function, or its z-score,

z(K ;Φ,Ω j ) =
S(K ;Φ,Ω j ) − H (Φ,Ω j )

σS (Φ,Ω j )
(3.24)

measures the agreement of the data with a known model — The data is inconsistent with

the model when the absolute value of the z-score is much greater than unity.

The z-scores of the 175 selected frames versus particle sizes are shown in Figure 3.5.

The particle sizes were determined by fitting back detector data to a homogeneous sphere
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with adjustable size and a mass density of 1.381 g/cm3. Frames with particle sizes close

to the diameter of RDV generally have smaller z-scores, though some still manifest

inconsistency with the model. This could be caused by the presence of a water layer on

the particle surface. This model-based normalized surprise function may potentially be

useful for hit-finding, especially when a model of similar structure is available and the

particle is too small to produce a recognizable signal on the back detector.

3.2.2 Structure reconstruction

The second dataset we analyzed [61] was collected from PR772 virus particles at the

AMObeamline [21] of the LCLS inAugust, 2015. The diffraction patternswere collected

at photon energy of 1.6 keV by two detectors arranged in tandem. The detector distances

were 100 mm and 581 mm for the front and back detectors, respectively. Due to the

dysfunction of part of the front detector panels, the back detector data was used for our

structure reconstruction. A total of 16,859 frames were used in the reconstruction, with

one of them shown in Figure 3.6.

Due to the fluence fluctuation of XFEL sources from shot to shot, we modeled the

mean photon number, W̃i j k , measured by pixel i in data frame k when the particle has

orientation j by (see Section 2.3.2 for more details)

W̃i j k = piφkWi j, (3.25)

where pi is the product of the polarization factor and solid angle of pixel i, φk is a scale

factor that accounts for the fluence fluctuation in data frame k, and Wi j is the tomogram

value calculated from the 3D intensity model, W .

Since the icosahedral PR772 virus can be approximated as a sphere at low resolution,
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Figure 3.6: Diffraction pattern of a single-particle hit of PR772 virus collected by the
back detector in units of photons. The regions of the beamstop and detector gap are
masked out. The half-period resolutions are 5.8 nm at the edge and 4.2 nm in the corner
of the detector.

we estimated the per-frame scale factor, φk , by

φk =

∑
i Kik/pi∑

i
∑

j w jWi j
(3.26)

after the E-step in each iteration of the EMC reconstruction, where Kik is the photon

count measured by pixel i in data frame k, and w j is the fraction of the continuous

rotation group assigned to rotation sample j. Using the estimated values of φk , the

tomograms were updated in the M-step by

Wi j → W ′i j =

∑
k Pj k (W, φk )Kik/pi∑

k Pj k (W, φk )φk
, (3.27)

where the conditional probabilities, Pj k (W, φk ), are given by

Pj k (W, φk ) =
w j

∏
i W̃ Kik

i j k exp(−W̃i j k )∑
j ′ w j ′

∏
i W̃ Kik

i j ′k exp(−W̃i j ′k )
. (3.28)

The updated tomograms, W ′i j , were merged in the C-step using Equation (2.52) to form

a new 3D intensity model, W ′, and then the Friedel symmetry was imposed. The EMC

iterations continued until the 3D intensity model converged, whose central slices are

shown in Figure 3.7.
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Figure 3.7: Central slices of the reconstructed 3D intensity model of PR772 virus,
rendered in arbitrary units. The highest resolution cutoff corresponds to the half-period
resolution of 5.9 nm.
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Figure 3.8: Central slices of the reconstructed real-space contrast of PR772 virus,
rendered in arbitrary units, by phasing the reconstructed 3D intensity model shown in
Figure 3.7. With the half-period resolution of ∆x = 5.9 nm, the particle size can be
estimated to be about 70 nm.

The phasing step was done using the difference map algorithm [17]. By applying

an inverse FFT on the converged 3D intensity model, we obtained the particle autocor-

relation, from which we estimated the particle support size. Using simple support and

Fourier magnitude projections, the difference map algorithm was implemented for sev-

eral thousands of iterations to reconstruct the particle contrast in real space. The central

slices of the 3D contrast are rendered in Figure 3.8. With the half-period resolution of

∆x = 5.9 nm, we can estimate the particle size of PR772 virus to be about 70 nm.
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Discussion

With intense competition from single-particle cryo-EM [29], the current development

of SPI is limited by two factors — particle hit rate and sample heterogeneity. As

discussed in Section 3.1.2, we should expect to collect at least 105 diffraction patterns

of single particles to achieve a half-period resolution of 14 Å. If the injected particles

manifest structural heterogeneity, for example, the wide particle size distribution due to

the aggregation of non-volatile contaminants around the injected particles [14], more

diffraction patterns would be required to reconstruct the structures of different structural

classes.

The hard X-ray beamline, CXI, of the LCLS allows data to be collected at angstrom

resolution. However, the small beam focus size that counteracts the smaller scattering

cross sections at shorter X-ray wavelength results in a low particle hit rate. On the other

hand, the soft X-ray beamline, AMO, of the LCLS produces a larger beam focus size and

hence allows higher particle hit rate, but the resolution is limited to several nanometers

due to the physical limitations of beamline design. Although the European XFEL and

the upcoming upgrade of LCLS II will increase the X-ray pulse repetition rate by three

orders of magnitude to greatly increase the number of particle hits, significant advances

in injector technology are necessary to make SPI a feasible high-resolution technique in

structural biology.
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CHAPTER 4

TABLE-TOP SPARSE CRYSTALLOGRAPHY

With SPI at sub-nanometer resolution still beyond our reach, the most successful tech-

nique developed at XFELs so far is arguably serial femtosecond crystallography (SFX)

[10, 11]. In SFX experiments, data frames are collected from protein nanocrystals1 se-

quentially delivered in random orientations into the X-ray beam, which avoids the need

to grow large crystals in conventional crystallography experiments. The femtoseconds

long pulses allow the photon scattering process to outrun the radiation damage of the

crystals, and the high fluence of the pulses enables sufficient photons to be scattered to

a fast-framing detector [59] to determine the crystal orientations by indexing individual

data frames. The protein structure is solved by merging the crystal diffraction patterns

in reciprocal space and phasing the resulting Fourier magnitudes.

Although developments in detector technology, sample delivery and data analysis

have made SFX a viable technique, its wide use is limited by the scarcity of XFEL

beamtime. Despite the construction of XFELs worldwide, available beamtime at XFELs

will still be scarce compared to that provided by the existing storage ring synchrotron

sources in the near future. This has inspired development of serial microcrystallography

experiments at current storage ring sources [9, 27, 29, 32, 48, 55, 62, 69], where protein

structures are solved by merging diffraction patterns of many unoriented, individual

microcrystals. Since the pulsewidth of storage ring sources is of the order of picoseconds,

radiation damage cannot be outrun in the same way as at XFELs. At storage rings the

exposure time per crystal is limited by radiation damage. If the crystal is too small, too

few X-rays to determine the crystal orientation will be diffracted prior to irreversible

radiation damage. Therefore, serial crystallography at storage ring sources has thus far

1The term ‘nanocrystal’ has been loosely used to refer to crystals of sizes ranging from a few hundred
nanometers to several micrometers.
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relied on relatively large crystals. Frames with insufficient resolvable Bragg peaks for

indexing, which we call ‘sparse frames’, are simply discarded. Proteins not bound up in

large crystals are wasted for the purpose of structure determination.

Using the EMC algorithm, we have developed an alternative analysis method that

makes use of the sparse frames without exceeding a dose that would damage the crystal.

Unlike indexing algorithms that determine a definite orientation on a per frame basis,

the EMC algorithm models the orientation of each frame probabilistically and recon-

structs a consistent 3D intensity model using all the data frames simultaneously. The

information from a sparse frame still contributes to the reconstruction even though the

frame alone cannot be indexed. This approach can reduce the usable crystal size in SMX

experiments at storage ring sources and extract information from the sparse frames that

would otherwise have been discarded.

In this chapter, we demonstrate the ability of the EMC algorithm to handle sparse

frames with two proof-of-concept experiments. In these experiments, large protein

crystals were illuminated by a dim lab X-ray source to simulate sparse frames collected

from microcrystals at storage ring sources. By increasing the experimental complexity,

the EMC algorithm has been developed to take on the analysis of a real SMX dataset

collected at a storage ring source, which is the focus of the next chapter. The contents of

this chapter have been published in Ref. [41] and [79].

4.1 Single-axis data

This study is part of a methodical program that aims to analyze sparse crystal diffraction

data collected in SMX experiments at storage ring sources. In Ref. [58] and [4], it is

shown that the probabilistic modeling of the EMC algorithm continues to hold even
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with just a few photons per frame in 2D and 3D shadowgraphy. In Ref. [5], the EMC

algorithm was used to reconstruct the 3D intensity map from sparse frames collected

from a small-molecule crystal rotated about a single axis. Here we show a successful 3D

intensity reconstruction from sparse frames without any resolvable Bragg peaks, which

were collected from a protein crystal rotated about a single axis. It is further demonstrated

that the protein structure can be solved from the reconstructed Bragg intensities.

4.1.1 Data collection

In our first proof-of-concept experiment [79], a single hen egg white lysozyme (HEWL)

crystal of approximately 400 µm in size was mounted on a goniometer and set contin-

uously rotating on a rotation stage at 0.05◦ per second, with the rotation axis set to be

perpendicular to the incident beam. The crystal was illuminated by a Cu Kα X-ray beam

(1.54 Å in wavelength) generated by a rotating anode X-ray generator. A cryostream

was used to maintain the crystal at 100 K to help protect it from radiation damage. The

X-ray beam had a flux density of 40 photons · µm−2 · s−1 and a divergence of 1 mrad.

The data frames were recorded by a fast-framing Mixed-Mode Pixel Array Detector

(MM-PAD) [71] at a distance 33 mm from the crystal. The center of the beam was

placed in one corner of the active area of the MM-PAD to record the highest possible

resolution2, which was approximately 1.3 Å. A PIN-diode beamstop was used to keep

the direct beam from striking the detector. The schematic of the experiment is shown in

Figure 4.1.

2With wavelength λ and scattering angle θ, crystallographers define the resolution by

(∆x)full = 2π/q =
λ

2
sin−1 θ

2
, (4.1)

where (∆x)full is also called the full-period resolution and is twice the half-period resolution.
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Figure 4.1: Schematic of the single-axis sparse crystallography experiment (not drawn
to scale). The X-ray beam is incident from the left side of the image along the z-axis,
with the crystal rotated about the y-axis. A cryostream cools and maintains the crystal
at 100 K. The diffracted photons are recorded by the MM-PAD, and the main beam is
blocked by a beamstop.

We ensured data sparsity by reducing the exposure time per frame to a sufficiently

short duration. An exposure time of 10 ms was used, which corresponds to a 0.0005◦

oscillation angle per frame. A total of 8.8 million frames were collected (12 full

revolutions of the crystal), with about 200 photons per frame on average (Figure 4.2).

4.1.2 Data analysis

EMC reconstruction

We sampled the rotations uniformly about the single rotation axis, whose orientation in

the crystal reference frame was obtained by merging the data frames collected in the first

crystal revolution into bins of size 1◦ and indexing with the XDS package [37]. Using

the lattice parameters estimated by indexing, the initial 3D intensity model was seeded

by placing small 3D Gaussians of random height at each predicted Bragg position. No
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Figure 4.2: Random selection of six data frames (262 × 393 pixels). The direct beam
is incident normally in the lower right region of the detector, which is blocked by the
beamstop. The resolution at the upper left corner is 1.3 Å. Each frame consists of only
200 photons on average and the maximum photon count in these frames is three per
pixel. The size of the pixels is smaller than the rendered photons in this image, which
are enlarged for visual clarity.

symmetry, such as Friedel pairs or systematic absences, was imposed. We note that this

initialization step was the only time that information about the relative angles between

data frames was used.

The 3D intensity model, W (q), was reconstructed using the standard EMC algorithm

described in Section 2.3.1. Since the lab X-ray source is unpolarized, pi, the product of
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Figure 4.3: Slices of the reconstructed and reference intensity models in the hk plane at
constant values of l. Even without imposing symmetry, the reconstructed intensity obeys
the reflection condition 00l : l = 4n required by the P43212 space group symmetry of
the HEWL crystal (see insets). The mapping to reciprocal space transforms the detector
gaps [71] into curves.

the polarization factor and solid angle for pixel i, is a constant at fixed spatial frequency

magnitude, q. The factor pi can hence be absorbed into the definition ofW (q), and would

be divided out from the reconstructed Bragg intensities before solving the structure. The

photon count, Kik , measured by pixel i in data frame k is the Poisson sample of the

mean photon number, Wi j , measured by pixel i given crystal orientation j. No symmetry

was imposed in the reconstruction. The EMC iterations continued until the 3D intensity

model, W (q), converged. On convergence, we rescaled the values of W (q) so that the

sum of its voxel values equalled the total number of photons recorded in the dataset. By

Poisson statistics, the variance of each voxel is then given by the voxel value.

The reconstructed intensity model was compared with the actual intensity model.

The actual (i.e. ‘reference’) model was constructed using the known orientation of each
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Figure 4.4: Histogram of the difference between the reconstructed most probable orien-
tation and the actual orientation for each frame, expressed in degrees about the rotation
axis. The EMC algorithm correctly assigned 99.7% of the frames within 1◦, as shown
in the inset.

frame, even though this information was not used in the EMC reconstruction. Several

slices of the reconstructed and reference intensity models perpendicular to the l-axis

of the reciprocal lattice are shown in Figure 4.3. The reconstructed intensity obeys

the reflection conditions (structure factors not systematically zero) 00l : l = 4n and

h00 : h = 2n required by the P43212 space group symmetry of the HEWL crystal [30].

Since no symmetry was imposed in either the seeding or reconstruction process, this

suggests a successful reconstruction.

A more direct validation of our reconstruction is the difference between the most

probable orientation of each frame assigned by the EMC algorithm and its actual orien-

tation, which is shown in Figure 4.4 as a histogram of relative angles about the rotation

axis. We found that 99.7% of the frames were assigned to the correct orientation within

1◦. The outliers are possibly caused by an abnormally low SNR in some data frames, for

example, frames recorded at crystal orientations with few Bragg spots intercepted by the

Ewald sphere, or frames that suffered extra background scatter from the sample holder.
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This shows the importance of background reduction in future experiments, specifically

in the case of small or weakly diffracting crystals.

Integration of Bragg peaks

Since the EMC algorithm placed no special focus on the Bragg peaks, everything present

in the data frames — background, diffraction spots, diffuse scatter, etc. — were recon-

structed. In order to extract the information of the Bragg intensities, we used a 3D

version of the peak-segmentation algorithm described in Ref. [81]. The segmentation is

a classification of voxels into signal or background based on a z-score

z(w) =
w − µ

σ
, (4.2)

where w is the value of the voxel in consideration, and µ and σ represent the mean and

standard deviation of the values of background voxels in a surrounding n × n × n cube.

Voxels with z-score above a particular threshold, γ, are classified as signal; otherwise

they are considered as background. In the first iteration, all voxels were used to calculate

µ and σ. After that, only voxels classified as background in the previous iteration were

included. For good-quality segmentation of the Bragg peaks, we gradually increased γ

from 1.0 to 3.0 in successive iterations.

Using the segmented Bragg peaks, we refined the estimates of lattice parameters. For

a candidate set of lattice parameters, we computed the total intensity of segmented peaks

lying within ellipsoids centered on the corresponding Bragg positions. The ellipsoid

volume was a small fraction of the reciprocal unit cell, with principal axes consistent

with the tetragonal cell. The lattice parameters giving the greatest total intensity were

taken as the refined values. At each predicted Bragg position, an ellipsoid window of

a larger volume was used for peak integration. If a voxel is within such a window, it is
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assigned to the corresponding peak; otherwise, it is classified as background. The mean

of the background voxels surrounding each Bragg position was subtracted from each

signal voxel before the signal voxels were summed to give the Bragg intensities, whose

variances were calculated using error propagation. Partial peaks, such as those adjacent

to boundary, detector gaps or the beamstop region, were rejected. Finally, the corrections

due to polarization factors and solid angles were applied to the Bragg intensities and

variances, from which we calculated the structure factor magnitudes and their variances.

Structure solution

In order to retrieve the phase information, we input the reconstructed structure factormag-

nitudes and variances toMOLREP [73] from the CCP4 suite [80] to produce amolecular-

replacement solution using a template HEWL structure (PDB entry: 193L [75]). The

solution was then refined through 20 iterations in REFMAC [50] with both rigid-body

and restrained refinements, and was rebuilt in Coot [20] with cyclical refinement.

The structure solved from theEMC-reconstructed intensities agreeswellwith the tem-

plate structure, PDB entry: 193L (Figure 4.5). The root-mean-square deviation (r.m.s.d.)

Reconstruction
Space group P43212
Lattice parameters (Å) a = b = 77.5, c = 36.2
Resolution (Å) 54.8 – 1.50
Completeness (%) 92.0
Reflections 16,056

Refinement
Atoms 1,963
Rwork/Rfree (%) 28.2/32.0
R.m.s.d. for bonds (Å) 0.0192
R.m.s.d. for angles (◦) 0.120

Table 4.1: Refinement statistics of the structure solved from the single-axis dataset.
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of the Cα atoms between the two structures equals 0.27 Å, which could be attributed to

different solvent content during crystallization and water placement during refinement.

With the refinement statistics shown in Table 4.1, our structure reconstructed from sparse

data compares favorably with structures obtained by more conventional means.

Figure 4.5: Reconstructed protein structure (grey) superimposed on the model (PDB
entry: 193L, purple) used in molecular replacement. High resolution features (active
sites) are rendered as green sticks (model structure) and grey mesh (reconstruction).

4.1.3 Discussion

In this study, we have shown experimentally that a series of unoriented, sparse diffraction

patterns collected from a protein crystal rotated about a single rotation axis can be

assembled into a 3D intensity map using the EMC algorithm. The validity of the

reconstruction is supported by the recovery of symmetries which were absent in the

seeding process and the small angular error in the reconstructedmost probable orientation

for each frame. Moreover, we have demonstrated that the protein structure can be solved

by phasing the reconstructed structure factor magnitudes throughmolecular replacement.

This result suggests that the indexability on a per frame basis does not necessarily limit

structure determination in SMX.
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Several features are still needed to extend the result of this study to real SMX experi-

ments. The first one is to sample the entire rotation space, whichmakes the reconstruction

muchmore computationally intensive, and requires significant developments of the EMC

algorithm. Another challenge is the background reduction. By counting the number of

photons that were not beneath the Bragg peaks in our reconstructed 3D intensity model,

we found that 80% of the photons in the dataset came from background scatter, which

resulted from air, the solvent surrounding the crystal, and the sample holder. When

the diffraction patterns are collected from multiple microcrystals, reducing background

photons scattered from the sample delivery medium will be a more critical issue for the

success of reconstruction.

4.2 Two-axis data

In order to sample a larger subset of the rotation space, we collected sparse diffrac-

tion patterns from a large HEWL crystal rotated continuously about two orthogonal

axes in our second proof-of-concept experiment [41]. The local update scheme of the

EMC algorithm was developed to speed up the high-resolution reconstruction by two to

three orders of magnitude. We have again shown that the crystal intensity can still be

reconstructed even without knowledge of the crystal orientation in any sparse frame.

4.2.1 Data collection

The X-ray diffraction patterns were collected from a single HEWL protein crystal cen-

tered at the intersection of two orthogonal rotation axes at room temperture. The

crystal was illuminated by a Cu Kα X-ray beam (1.54 Å in wavelength) generated by

a rotating anode X-ray generator, with a divergence of 1 mrad and a flux density of
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Figure 4.6: A simplified schematic of the experimental setup with two orthogonal
rotation axes. The beam incidence is perpendicular to the ψ axis and the MM-PAD, and
the main beam is blocked by the beamstop. The crystal is rotated in increments of 0.1◦
about the ψ axis, with the data frames recorded by the MM-PAD when φ traverses 360◦
continuously at each value of ψ. The figure is not drawn to scale.

40 photons · µm−2 · s−1. The beam incidence was normal to the MM-PAD and one of the

rotation axes. The sample-to-detector distance was 60 mm. The center of the beam was

placed in one corner of the active area of the MM-PAD, giving a resolution of 2.0 Å in

the opposite corner. A pin-diode beamstop was used to prevent the direct beam from

striking the MM-PAD during data collection. The schematic of the experiment is shown

in Figure 4.6.

The crystal was rotated about the ψ axis from 0◦ to 17.9◦ and then from −18.0◦ to

−0.1◦ in increments of 0.1◦. At each value of ψ, the crystal was rotated by 360◦ about

the φ axis continuously at a constant angular velocity of 0.5◦ per second. The MM-PAD

collected images at a framing rate of 4 ms per frame in each revolution of φ, which

gave an oscillation angle of 0.002◦ per frame. Owing to radiation damage and possible

dehydration of the crystal, we only kept the data frames recorded at ψ ranging from 0◦

to 15.9◦ to pass on to processing. This subset of data was chosen by monitoring the

decay of high-resolution peaks in the merged diffraction patterns of bin size 1◦ in φ at

each value of ψ. We also discarded frames that did not record any photons, which was
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Figure 4.7: (a) Histogram of the number of peaks per collapsed frame, which is the
sum of 100 successive frames in the raw data. A cluster with more than two contiguous
pixels and at least two photons per pixel on average is identified as a peak. (b) A random
selection of the collapsed frames, with the identified peaks marked by blue circles. The
cross denotes the beam center, and the resolution at the upper right corner is about 2 Å.

possibly caused by glitches of the rotating anode.

To simulate the signal level of an SMXexperiment, we collapsed every 100 successive

frames that did not contain any discarded frames, since the data was recorded when the

crystal was rotated continuously in φ at a fixed value of ψ. The collapse of every 100

successive frames gave us 2.7×105 frames with an average of 3000 photons per collapsed

frame. By defining a possible Bragg peak as a cluster with more than two contiguous

pixels and at least two photons per pixel on average, we obtained the statistics of the

number of peaks in each collapsed frame (Figure 4.7). Even with this generous criterion

for peak finding, most of the collapsed frames do not have enough peaks to be indexed

by conventional means (at least 20 to 30 resolvable peaks per frame).

Following the calculation in Ref. [33], we estimated the energy absorbed by our

HEWL crystal over the exposure of one collapsed frame, assuming that protein crystals

have the same mass energy absorption cross section as water. Our calculation showed

that an 8 µm3 protein crystal would have endured a 0.2 MGy radiation dose if it had

scattered the same number of photons as our large HEWL crystal during this period.
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This dose is within the lifetime of protein crystals at room temperature if the radiation is

delivered quickly [56], so the signal level in our study should be comparable to that in a

real SMX experiment.

It was discovered after data had been collected and the apparatus disassembled that

the crystal was of poor quality. We found that even using the known orientations, the

resulting structure factor magnitudes cannot be phased to produce a high-resolution

structure. The goal of this study, however, was to extend the EMC approach to a

greater rotation subset spanned by the two-axis rotations. Because the quality of the

reconstructed intensities can be assessed by comparing with the actual intensities, the

goal of the experiment could be met even though the crystal was of poor quality for

solving the structure.

4.2.2 EMC reconstruction

We first determined the orientation of the crystal reference frame relative to the lab

frame bymapping the collapsed data frames to reciprocal space with their known relative

orientations to form a 3D intensity map. The reciprocal lattice of the crystal is embedded

in the intensity map and differs from the lab frame by a global rotation Rg, which was

obtained by segmenting out the Bragg peaks [79] and then indexing the peaks [70].

The intensity map was then rotated by Rg to align with the lab frame, and this aligned

intensity map is what we call the reference intensity map.

We generated the discrete rotation samples using the 600-cell subdivision

method [46], where the angular resolution δθ = 0.944/n is specified by the order

n = 1, 2, 3, . . . . Here we confined the rotation samples to those in the rotation subset

explored by the rotated crystal. The range of the subset in the lab frame was given
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by applying the global rotation, Rg, to the relative orientations between the collapsed

frames. The 3D crystal intensity map was reconstructed from the collapsed frames using

rotation samples in this subset, with the orientation of each frame unknown to the EMC

algorithm. This choice of rotation samples makes the solution to the two-axis problem

directly applicable to the randomly oriented frames in real SMX experiments, where the

rotation subset is replaced by the whole 3D rotation space.

The initial 3D intensity map was seeded with small 3DGaussians of random height at

each predicted Bragg position, with the lattice parameters given by the indexing process

mentioned above. In real SMX experiments, where the true orientation of each frame

is unavailable, the lattice parameters should be estimated by other means, for example,

indexing the 1D pseudo-powder pattern, which is the histogram of the identified peaks in

all data frames over spatial frequency magnitudes. No symmetry was imposed in either

the seeding or reconstruction process.

Given the 2.7 × 105 collapsed frames, we started an EMC reconstruction using the

standard update scheme described in Section 2.3.1. As in the single-axis case, the

polarization factors and solid angles were absorbed into the definition of W (q). The

measured photon count, Kik , was modeled by the Poisson sample of the mean photon

number, Wi j . Rotation samples of order n = 40 and data up to 3 Å resolution were

used in this stage to quickly obtain a converged low-resolution reconstruction. After

the convergence was reached, a high-resolution 3D intensity map was constructed using

data up to 2 Å resolution and the probability distribution of orientations. This intensity

map was then used as the initial model for the local update scheme (Section 2.3.3) using

rotation samples of orders (nc, n f ) = (40, 60) for refinement. Different pairs of orders,

(nc, n f ), with increasing angular resolutions were sequentially used in the local update

scheme to extend the peak convergence to high resolution. The converged intensity map
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Figure 4.8: The average SNR of the integrated Bragg intensities from the converged
intensity maps at different stages of the reconstruction. The increase of 〈I/σI〉 at high
resolution indicates the reconstruction of high-resolution peaks. The 2.27 Å resolution
determined by CC∗ (see below) is marked by the black dashed line.

was subsequently rescaled so that the sum of voxel values equalled the total number

of photons collected in the dataset. Following the procedure of peak integration in the

single-axis case, we obtained the Bragg intensities and their variances. Partial peaks,

such as those adjacent to boundary, detector gaps or the beamstop region, were rejected.

Figure 4.8 shows the average SNRof the integratedBragg intensities, 〈I/σI〉, from the

converged intensity maps at different stages of the reconstruction. In the transition from

the standard update scheme of n = 40 to the local update scheme of (nc, n f ) = (40, 60),

the values of 〈I/σI〉 dropped at low resolution but remained at similar levels at high

resolution. The lack of improvement at high resolution indicates that the current angular

resolution of the local update scheme still cannot resolve high-resolution peaks. On the

other hand, the inclusion of data beyond 3 Å slightly disrupted the original probability

distribution, which in turn reduced 〈I/σI〉 at low resolution. The improvement of 〈I/σI〉

when increasing the angular resolutions shows the reconstruction of high-resolution

peaks and justifies the local update scheme.
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Figure 4.9: Slices of the reconstructed and reference intensity maps in the hl plane at
constant values of k of the reciprocal lattice. Even without imposing any symmetry in
either the seeding or reconstruction process, the converged intensity map still follows
the reflection conditions required by the space-group symmetry P43212 of the HEWL
crystal (see insets). The 2.27 Å resolution determined by CC∗ is marked by the arcs in
white. The mapping into reciprocal space transforms the detector gaps [71] into curves.

With the converged intensity map from the local update scheme of (nc, n f ) =

(60, 150) as our final intensity reconstruction, Figure 4.9 compares the slices of the

reconstructed and reference intensity maps perpendicular to the k-axis of the reciprocal

lattice. As in the single-axis case, the recovery of symmetries in the Bragg intensities

demonstrates the success of the EMC reconstruction. We note that the discrepancy be-

tween the two intensity maps in high-resolution peaks is consistent with the low SNR at

high resolutions (see Figure 4.8). Since the photons contributing to the high-resolution

shells were mostly collected by the upper left corner of the MM-PAD (Figure 4.6), the

resulting lower SNRmade the orientation reconstruction more challenging in this region.

A further comparison is shown in the scatter plot of the integrated Bragg intensities

from the reconstructed and reference intensity maps (Figure 4.10), which excludes the
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Figure 4.10: Scatter plot comparing the integrated Bragg intensities from the recon-
structed and reference intensity maps. Integrated intensities with SNR I/σI < 2 are
excluded from the plot. The linear correlation shows the agreement between the two
intensity maps.

reflections with SNR I/σI < 2. The linear correlation of the integrated intensities shows

the consistency of the two intensity maps. By summing the total photon counts of both

the integrated and the partial peaks, we also estimated the fraction of photons coming

from the background and diffuse scatter as about 90%, which was mainly scattered by

air, the solvent surrounding the crystal, and the sample holder.

To estimate the resolution of our reconstruction, we calculated the correlation coeffi-

cient of the observed reflections with the underlying true signal, CC∗. We first randomly

separated the symmetry-related peaks into two halves, and calculated the unique reflec-

tions by averaging the symmetry-related peaks in each half. The correlation coefficient

between the unique reflections of the two halves, CC1/2, was then computed in different

resolution shells. Under the assumption that the errors of the two halves are independent,

identically distributed and free from the errors of the true signal, the value of CC∗ is

given by [38]

CC∗ =
( 2CC1/2

1 + CC1/2

)1/2
. (4.3)

66



0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

1.0

C
C

∗

q/2π = 2 sin(θ/2)/λ (Å
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Figure 4.11: Plot of CC∗ as a function of spatial frequency magnitude. The resolution
of the reflections is determined as 2.27 Å by a threshold CC∗ = 0.5. The error bars are
estimated by repeating the random separation of symmetry-related peaks 1,000 times,
while the ups and downs in CC∗ result from the binning in resolution shells.

The plot of CC∗ as a function of spatial frequency magnitude is shown in Figure 4.11,

with the error bars estimated by repeating the random separation of symmetry-related

peaks 1,000 times. The large error bar in the highest-resolution shell shows the low

correlation between the integrated intensities of the two halves, which is consistent with

the low SNR at high resolution. The resolution of the reconstructed Bragg intensities

was determined as 2.27 Å by the threshold CC∗ = 0.5. We note that the value of CC∗

is dominated by the stronger peaks in each resolution shell. Therefore, CC∗ can still

have moderate values even if some weak peaks are not resolvable, as indicated by the

discrepancy between the two intensity maps in high-resolution peaks in Figure 4.9.

4.2.3 Discussion

Here we have demonstrated the 3D intensity reconstruction using the EMC algorithm

from the sparse diffraction patterns collected from a large HEWL crystal. The crystal

was rotated about two orthogonal axes to sample a greater subset of the rotation space.
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To address the increased computational load, we developed the local update scheme of

the EMC algorithm to speed up the high-resolution reconstruction. These developments

have brought us one step closer to the goal of applying the EMC approach to reduce the

usable crystal sizes in current SMX experiments.

In this study we used a large single crystal rotated in various orientations to emulate

the data expected from multiple small crystals. The obvious next step towards practical

application of the method is to try the EMC algorithm on data collected from multiple

small crystals. It will be necessary to experimentally determine the severity of difficulties

arising from sources including varying crystal diffraction quality and occasional multiple

crystals in the beam. In addition, the EMC algorithm also needs to calculate the frame-to-

frame signal strength variation arising from crystal size variation. These issues together

with improved estimates of background scatter are addressed in the next chapter to

determine a 3D protein structure from an SMX dataset collected at a storage ring source.
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CHAPTER 5

SERIAL MICROCRYSTALLOGRAPHY AT A STORAGE RING SOURCE

Adapted from SFX experiments at XFELs, most room-temperature SMX experiments

carried out at storage ring sources also adopt the same data analysis pipelines as SFX.

When it comes to crystal intensity reconstruction, the most widely used approach is the

combination of the packages, Cheetah [7] and CrystFEL [77]. Cheetah consists of a set

of high-throughput data reduction programs for serial diffraction patterns. It identifies

possible crystal diffraction patterns by a threshold on the number of resolvable peaks per

frame. These patterns are passed to CrystFEL to determine the crystal orientations by

indexing methods. The Bragg intensities are subsequently obtained by the Monte Carlo

integration method [39], which calculates the average of the indexed peak values after

background subtraction and corrections for polarization and solid angle.

Here we describe an alternative approach that uses the EMC algorithm to reconstruct

the Bragg intensities from SMX data collected at storage ring sources. This approach

is demonstrated on an SMX dataset graciously provided by the authors of Ref. [48]. In

particular, we threw away the strong crystal diffraction patterns and focused on the data

frames that cannot be indexed by conventional means. Despite the daunting background

scatter from the sample delivery medium, we still managed to solve the protein structure

at 2.1 Å resolution. In contrast to the Monte-Carlo integration approach, our method

uses the reconstructed crystal volumes, for all the data frames, when building the 3D

intensity model. By lifting the requirement of indexability for each data frame, protein

structures can be determined with small or weakly-diffracting crystals at storage rings.

The contents of this chapter will appear in Ref. [42].
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5.1 Data reduction

The SMX dataset we used was collected by Martin-Garcia and coworkers at the GM/CA

23-ID-D beamline at the Advanced Photon Source [48]. The raw data consists of 304,643

frames1 measured from HEWL microcrystals of size ranging from 5 to 10 µm at room

temperature. The crystals were sequentially delivered to the X-ray beam in random

orientations by a lipidic cubic phase (LCP) gel injector with a glass nozzle of 50 µm

inner diameter [76]. In order to demonstrate the ability of our method to handle weak

crystal diffraction data, we excluded the data frames with more than 20 resolvable Bragg

peaks (see below), which is the empirical lower bound for normal indexing methods to

succeed. In other words, we only consider the weak crystal diffraction patterns that were

rejected for the structure determination in Ref. [48], which amounts to 120,574 sparse

frames.

The data reduction started by identifying the frames containing crystal diffraction

signals because the crystals were randomly distributed in the LCP gel. This process,

also known as ‘hit finding’, first locates possible Bragg peaks in the diffuse background

scatter. Our method is based on outlier detection. In the absence of crystal diffraction,

the probability that a pixel measures a photon count, K , follows the Poisson distribution,

Pb(K ) = e−bbK/K!, where b is an estimate (described below) of the photon number

at that pixel due to the diffuse background scatter. Given b, we can identify an outlier

pixel by its photon count being too large to be consistent with Poisson statistics. This

consistency is defined via a photon count threshold, K̃ , defined by the cumulative

probability:

min
K̃

K̃∑
K=0

Pb(K ) > 1 − ε, (5.1)

1This dataset is a representative subset of the data reported in Ref. [48] (364,724 frames in total),
without any pre-selection.
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where ε is a small number that lets us set a false-positive rate (see below). If the photon

count measured in the pixel exceeds the threshold, K̃ , we assume that crystal diffraction

contributed to the signal.

Since we had no prior knowledge of the background photon numbers, b, we estimated

them by the following self-consistent iterative scheme. Observing that the background

scatter is generally azimuthally symmetric about the incident X-ray beam, we assumed

that b only depends on the frame index, k, and the spatial frequency magnitude, q. The

initial values of bqk were obtained by averaging all photon counts in annular regions, after

the pixel-wise correction of the polarization factor and solid angle. Because the number

of pixels in these annular regions ranged from 103 to 104, the value of ε in Equation (5.1)

was set to 10−5 to reduce false positives arising from statistical fluctuations. In each

iteration we used the current estimates of bqk to calculate the pixel-wise background

estimates, bik , by the relation

bik = pibqk, (5.2)

where pi is the product of the (positive) polarization factor and solid angle of pixel

i. From the values of bik , we identified the outlier pixels and excluded them from the

annular average for bqk in the next round. This procedure was repeated until the values

of bqk converged, giving us a good estimate of the background scatter and a list of outlier

pixels for each data frame.

The photon count thresholds, K̃ , defined by Equation (5.1) with ε = 10−5, are plotted

in Figure 5.1(a) over a range of background estimates, b. Also shown is the SNR, which

is defined as the ratio of K̃ to b. We can see that the SNR takes on a wide range of

values over b, especially when the values of b are close to zero. Since the background

estimates in the data frames used here range from a fraction to 20 photons, the threshold

values defined by the cumulative Poisson probability detects outliers in a more consistent
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Figure 5.1: (a) The photon count thresholds determined by Equation (5.1) with ε = 10−5.
The SNR is defined as the ratio of the thresholds to the background estimates. (b) The
cumulative probabilities, Pb(K ≤ b ·SNR), to measure photon count, K , that is no larger
than the thresholds, b · SNR, defined by fixed values of SNR over a range of background
estimates, b.

way than those determined by a fixed SNR. Figure 5.1(b) further illustrates this point by

plotting the cumulative probabilities, Pb(K ≤ b · SNR), for different thresholds defined

by fixed values of SNR. Under this definition, photon counts greater than the threshold,

b · SNR, are identified as outliers, which may result in many false positives at small

values of b. In practice, SNR is usually used along with other criteria that characterize

a peak in the hit finding process.

We were able to identify Bragg peak candidates as clusters that contain 2 to 10

contiguous outlier pixels, because most clusters have sizes smaller than 5 pixels. Clus-

ters with more than 10 contiguous outlier pixels were considered as originating from

something other than Bragg spots and were masked out for the rest of the analysis. As

mentioned above, frames with more than 20 candidate peaks were discarded to keep

the sparse frames only. Given the Bragg spot locations in the remaining frames, we

estimated the lattice parameters by constructing a 1D pseudo-powder pattern as fol-

lows. After mapping the candidate peaks to reciprocal space, we recorded the distances
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Figure 5.2: The 1D pseudo-powder pattern generated from the frequency of the inter-
peak distances in reciprocal space. The red dashed lines indicate the peaks predicted by
a primitive tetragonal lattice with lattice parameters a = 79.1 Å and c = 38.4 Å. The peak
closest to the origin represents pairs of Bragg peak candidates that are very close to each
other. These pairs are actually fragments of Bragg spots of a larger size.

between the centroids of the peaks, for all the data frames. By dividing the spatial fre-

quency magnitudes into bins of the same size, the 1D pseudo-powder pattern was given

by the histogram that records the frequencies of the inter-peak distances in each bin. The

inter-peak distances are a more reliable source of information about the lattice geometry

than the spatial frequency magnitudes of the peaks because the low-resolution peaks

are made inaccessible by the beamstop. By assuming a primitive tetragonal lattice to

simplify the analysis in this study, the lattice parameters were estimated as a = 79.1 Å and

c = 38.4 Å by fitting the peaks in the 1D pseudo-powder pattern (Figure 5.2).

In principle, we should be able to determine the lattice parameters from the 1D

pseudo-powder pattern even without the knowledge of the unit cell type. This can be

done by an exhaustive search over combinations of lattice parameters from unit cells with

high symmetry to those with low symmetry. In the challenging cases of crystals with low

symmetry and large unit cell dimensions, we can expect to have a separate measurement

of crystal diffraction patterns by moving the detector further away from the interaction

point. The 1D pseudo-powder pattern in this case would be the sum of resolvable peak

values over spatial frequency magnitudes. Sample consumption should not be a concern
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Figure 5.3: (a) The number of candidate peaks in each crystal-hit frame. The data frames
with more than 20 peaks were excluded from this study. (b) The number of possible
orientations for each crystal-hit frame, which were determined by an exhaustive search
in the rotation space using the identified peaks within 4 Å.

here, since the number of peaks needed to populate the 1D pseudo-powder pattern is of

similar order to the lattice parameters to be fitted (at most 6). These low-resolution crystal

diffraction patterns can also be incorporated to the EMC reconstruction to improve the

statistics of Bragg intensities at low resolution.

Finally, we narrowed down the possible crystal orientations per frame by taking ad-

vantage of the crystal lattice. The centroids of the candidate peaks within 4 Å resolution

in each frame were rotated over all rotation samples. A frame was considered a ‘crystal

hit’ when at least 3 candidate peaks matched the predicted Bragg positions within a pre-

defined distance, rp, at some orientation, and those frames with no such orientations were

simply discarded. The rotations were sampled by the 600-cell subdivision method [46]

at order n = 70, which corresponds to an angular resolution of 0.944/n ∼ 13.5 mrad.

This procedure reduced the data to 120,574 crystal-hit frames. As shown in Figure 5.3,

the possible orientations for each frame are still far from unique.
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5.2 EMC reconstruction

We modeled the diffraction pattern of each crystal hit as the Poisson sample from the

incoherent sum of the background estimates and the crystal diffraction. For data frame

k that records the diffraction of a crystal at orientation j, the mean photon number

measured by pixel i is given by

W̃i j k = bik + piφkWi j, (5.3)

where φk is a scale factor proportional to the crystal volume, the X-ray beam fluence and

the travel time of the crystal across the beam, and Wi j denotes the value sampled by pixel

i from the 3D crystal intensity model, W , at crystal orientation j. The Poisson sample

from W̃i j k gives the photon count, Kik , with the crystal orientation unmeasured. Our

main task is to reconstruct W and φk given the data, Kik , and the background estimates,

bik , which applies to the experimental condition described by Equations (2.55) to (2.59).

5.2.1 Low-resolution reconstruction

Since the computation time of the EMC algorithm is proportional to the number of pixels

and rotation samples, we began with a low-resolution reconstruction. The pixels with

resolution higher than 4 Å were masked out in the 120,574 selected frames, and the

rotation samples for each frame were limited to the possible crystal orientations recorded

in the hit-finding process. All the photon counts within the resolution cutoff were input

to the EMC algorithm to reconstruct both the strong and weak intensities. We seeded the

3D intensity model, W , with 3D Gaussians of random height at each Bragg position, and

only allowed the voxels within the predefined radius, rp, about the Bragg positions to

be non-zero throughout the reconstruction. The scale factors, φk , were initialized by the
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average value of the identified peaks in each frame. To achieve the highest resolution,

we imposed the tetragonal and Friedel symmetries on the values of W after each update

to increase the SNR of the Bragg peaks. In general, EMC reconstructions succeed even

without imposing symmetries [41, 79].

The values of φk were held fixed in the first few EMC iterations to rapidly obtain a

rough estimate of W . The updates then alternated between W and φ until the models

converged. Since a data frame may record diffraction signals from multiple crystals in

real SMX experiments, these multi-crystal frames have to be rejected to avoid compro-

mising the reconstruction, and this task was completed using the converged probability

distribution, Pj k . When a data frame has non-negligible probabilities at two orientations,

j1 and j2, which cannot be related by the crystal point group symmetry, it is likely that

the diffraction signals were scattered from two different crystals. We identified 528 such

multi-crystal frames and excluded them together with the 2,142 frames with φk = 0 from

the later analysis. Using the remaining 117,904 single-crystal frames, we updated W for

a few more iterations by fixing the values of φk until the new convergence was reached.

Figure 5.4(a) shows the central slice of the reconstructed 3D intensity model, W ,

perpendicular to the l-axis of the reciprocal lattice. Each spot represents an integrated

peak value in arbitrary units. After dividing the reconstructed values of φk by the beam

fluence and the crystal exposure time, we obtained crystal volume estimates for the

single-crystal frames. In order to put these on an absolute scale, we further rescaled

their values so that the largest crystal has size of 10 µm, the value reported in Ref. [48].

The resulting crystal volume distribution has 73% of the frames with crystal volume

below 100 µm3 (Figure 5.4(b)). Since our analysis excluded the frames with more than

20 peaks, which generally have larger crystal sizes, this distribution represents the upper

limits of the crystal volumes illuminated by the X-ray beam.
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Figure 5.4: (a) The central slice of the low-resolution 3D intensity model, W , perpendic-
ular to the l-axis of the reciprocal lattice. Each spot represents an integrated Bragg peak
in arbitrary units, with the negative reflections thresholded to zero for rendering. (b) The
reconstructed crystal volume distribution for the single-crystal frames. The values of the
crystal volume were rescaled so that the largest crystal size is 10 µm.

5.2.2 High-resolution reconstruction

Based on the low-resolution models, we extended the reconstruction to high resolution

using data up to 2 Å resolution. We initialized the 3D intensity model, W , by placing 3D

Gaussians of random height at each Bragg position, and replaced the voxel values within

4 Å resolution with the low-resolution 3D intensity model. The local update scheme of

the EMC algorithm was implemented to reduce the computation time, which limits the

rotation samples searched for each data frame to those neighboring the orientations that

were given a non-negligible probability in the low-resolution reconstruction [41]. Here

the rotations were sampled at order n = 140, which corresponds to an angular resolution

of 6.7 mrad. The update was limited to the 3D intensity model, W , because we believe

the values of φk are reliably determined by the low-resolution peaks. The tetragonal and

Friedel symmetries were imposed after each update of W to increase the SNR of the

Bragg peaks. Figure 5.5 shows the central slice of W perpendicular to the l-axis of the

reciprocal lattice, which has the same scale as Figure 5.4(a).
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Figure 5.5: The central slice of the high-resolution 3D intensity model,W , perpendicular
to the l-axis of the reciprocal lattice, which has the same scale as Figure 5.4(a). The
negative reflections were thresholded to zero for rendering.

We evaluated the reproducibility of the reconstruction by CC1/2, the correlation

coefficient between two sets of Bragg intensities independently reconstructed from two

halves of the data frames, respectively. The values of CC1/2 were calculated as follows.

The 117,904 single-crystal frames were separated into two halves, fromwhich we carried

out two independent reconstructions. The reciprocal space was then divided into shells

with equal spacing, and the correlation coefficients, CC1/2, were computed between the

unique reflections from the two reconstructions in each shell. As shown in Figure 5.6,

the positive values of CC1/2 throughout the spatial frequency magnitudes validate the

reproducibility of our approach. The values of CC1/2 can further be used to estimate

another correlation coefficient, CC∗, through the relation

CC∗ =

√
2CC1/2

1 + CC1/2
, (5.4)

whereCC∗ measures the correlation between the reconstructed intensities and the under-

lying true signals [38]. The resolution of the reconstruction is conventionally determined
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Figure 5.6: The correlation coefficients that validate the quality of our reconstruction.
The values of CC1/2 show the correlation between Bragg intensities independently re-
constructed from two halves of the data frames, respectively. Using Equation (5.4),
the values of CC∗, the correlation coefficient between the reconstructed intensities with
the underlying true signals, are estimated from the values of CC1/2. The other corre-
lation coefficient, CCemc vs. indexed, measures the consistency between our reconstructed
intensities with those obtained in Ref. [48] from the indexed frames.

at the value where CC∗ drops to 0.5, which corresponds to 2.1 Å in our case.

A more direct validation of our reconstruction comes from the comparison of our

reconstructed intensities to those calculated from the indexed peaks using the Mote-

Carlo integration approach in Ref. [48]. Dividing the reciprocal space into shells with

equal spacing, we calculated the correlation coefficient between the unique reflections

from the two sets of Bragg intensities in each shell. Also shown in Figure 5.6, the

correlation coefficient stays well above zero up until the resolution cutoff of 2.1 Å, which

demonstrates the consistency between the Bragg intensities solved from the two different

approaches. When the indexed peaks sufficiently sample crystals of various shapes, sizes

and orientations, the Bragg intensities computed by the Monte-Carlo method would in

principle correspond to the true signals. In that case, the curve of the correlation

coefficient calculated here should move toward the curve of CC∗ in Figure 5.6.
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5.2.3 Uncertainty estimation

We estimated the uncertainties of the integrated intensities from the measurement, Kik ,

by error propagation as follows. Let vector y be a set of functions of vector x. Their

covariance matrices, Λy and Λx, can be related by the formula of error propagation

Λy = JΛx J>, (5.5)

where J denotes the Jacobian matrix of y. When x and y are related by an implicit

function, f (x, y) = 0, the Jacobian matrix is given by

J = −
(
∂ f
∂y

)−1 (∂ f
∂x

)
. (5.6)

From Equation (2.58), the implicit function that relates the photon counts, Kik , and the

updated tomogram values, W ′i j , is∑
k

Pj k

(
piφk −

Kik

bik/(piφk ) +W ′i j

)
= 0, (5.7)

the derivative of the function to be minimized with respect to W ′i j . Since W ′i j is a scalar

in Equation (5.7), the Jacobian matrix of W ′i j becomes a row vector with length Ndata,

the number of data frames, and its k-th element is given by

Ji j
k =

Pj k

bik/(piφk ) +W ′i j

/ ∑
k ′

Pj k ′Kik ′

(bik ′/(piφk ′) +W ′i j )
2 . (5.8)

The covariance matrix of the measurement, Λ{Kik }, is a diagonal matrix of size Ndata ×

Ndata, with the diagonal terms being Kik as a result of the Poisson statistics. Substituting

these matrices into Equation (5.5), we obtain the variance of W ′i j , denoted by σW ′
i j

2.

The values of interest are the uncertainties of the integrated intensities, Ihkl =∑
p∈{phkl }

W ′(p), where {phkl } represents the 3D grid points within the predefined radius,

rp, for the Bragg peak labeled by indices hkl. From Equation (2.52), the variance of
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W ′(p) is given by

σW ′(p)
2 =

∑
i j

[
f (p − R j · qi)

(∑
k

Pj kφk

)]2
σW ′

i j

2

[ ∑
i j

f (p − R j · qi)
(∑

k

Pj kφk

)]2 . (5.9)

Here we assume that the tomogram values, W ′i j , contributing to the same Bragg peak are

independent variables. This assumption is based on the observation that each data frame

only has non-negligible probabilities at few orientations on convergence, so the values

of W ′i j with different indices are mostly sampled by different data frames. For the same

reason, we also assume that the values, W (p), for p sampling even the same Bragg peak,

are independent variables. The variance of Ihkl is hence given by

σhkl
2 =

∑
p∈{phkl }

σW ′(p)
2. (5.10)

5.3 Structure solution

Model building and refinement steps were done in a manner similar to those performed

in Ref. [48], with the intent to validate the EMC approach by a direct comparison to

the structure solved from the indexed frames (PDB entry: 5UVJ). The French-Wilson

correction [24] was executed to estimate the structure factor magnitudes from the recon-

structed weak or negative Bragg intensities. The phases of the structure factors were

built from the same template used in Ref. [48] (PDB entry: 4ZIX [25]) using molecular

replacement with MOLREP [73]. The structure solution was then iteratively refined to

2.1 Å resolution and inspected using REFMAC5 [50] in the CCP4 suite and Coot [20],

respectively. A sodium atom was added as judged by the electron density within the

known octahedral coordination of the four residues of the sodium ion. The refinement

statistics of the EMC-reconstructed structure solution and the structure solved from the

indexed frames, PDB entry: 5UVJ, are summarized in Table 5.1 for comparison. We
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EMC 5UVJ
Resolution (Å) 22.52 – 2.10 35.00 – 2.05
Reflections 7417 7164
Atoms 1019 1023
Protein atoms 1002 1002
Water, ligands and ions 17 21
Rwork/Rfree (%) 22.2/28.2 22.8/26.8
R.m.s.d. for bonds (Å) 0.013 0.013
R.m.s.d. for angles (◦) 1.211 1.306
Average B value (Å2) 39.8 34.9
Ramachandran plot statistics (%)

Favored 96.3 97.6
Allowed 1.3 2.4
Disallowed 0 0
Rotamer outliers 0.93 1

Table 5.1: Refinement statistics of the EMC-reconstructed structure solution and the
structure solved from the indexed frames, PDB entry: 5UVJ.

note that the higher average B value of our structure suggests that the data frames we

used may have come from less ordered and possibly more weakly diffracting crystals,

which are exactly the features we expect from the sparse frames.

Figure 5.7: Superposition of the ribbon representations of the backbone chains of our
structure solution (blue) and the structure, 5UVJ, (red), which presents no significant dif-
ferences. The Cα atoms between the two structures have r.m.s.d. of 0.131 Å. Deviations
greater than this value occur mostly in the solvent-exposed regions, with a maximum
deviation of 0.337 Å, though the deviations are only apparent by occasional changes in
color from red to blue along the backbone.
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Figure 5.8: Superposition of the four disulfide bonds (yellow) between our structure
solution (light red) and the structure 5UVJ (light blue): (a) Cys6-Cys127, (b) Cys30-
Cys115, (c) Cys64-Cys80, and (d) Cys76-Cys94. The average deviation for the atoms of
the thiol groups is 0.12 Å. Changes are mostly insignificant, and only apparent in splits
from light red to light blue.

The structure solved by the EMC approach using the sparse frames compares very

well with the structure solved in Ref. [48] using the indexed frames, PDB entry: 5UVJ.

Figure 5.7 shows the ribbon representations of the backbone chains of our molecular

model (blue) and the structure, 5UVJ, (red). The Cα atoms between the two structures

have r.m.s.d. of 0.131 Å, which is visible as an occasional change inbetween the red

and blue colors along the backbone chain. Deviations greater than this value occur

mostly in the solvent-exposed regions, with the maximum deviation of 0.337 Å. The

r.m.s.d. value for the entire protein molecule between the two structures is 0.138 Å, with

the maximum deviation of 0.338 Å. Figure 5.8 displays the disulfide bonds (yellow)

within two superimposed structures, our structure solution (light red) and 5UVJ (light

blue), showing insignificant deviations between the structures in the more radiation

damage-prone bonds. The average deviation for the atoms of the thiol groups is 0.12 Å.
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Figure 5.9: The scattering profiles of LCP and water, which were generated by the
weighted average of the azimuthally symmetric background estimates for each frame
and simulation, respectively. The shaded region is within one standard deviation from
the average scattering profile of LCP. The large standard deviation is mainly caused by
the jittering of the LCP stream.

5.4 Discussion

The major source of error that limits the quality of our reconstruction is the high back-

ground scatter from LCP. From the estimated X-ray beam size (different beam sizes of

5, 10 or 20 µm were used at different times during the data collection), the diameter of

the LCP gel column (50 µm), and the reconstructed crystal volumes (Figure 5.4(b)), we

can estimate the total number of photons scattered by LCP to be tens to thousands times

more than that scattered by the crystal in each data frame. As a result, the weak crystal

intensities are substantially affected by background intensity fluctuations.

The high background scattering from LCP is best shown when compared with the

scattering profile of water. Assuming an X-ray beam size of 10 µm and a detector

exposure time of 0.1 second, we simulated the scattering profile from a water column of

50 µm diameter from the experimentally measured pair distribution function [52, 67].

The scattering profile of LCP was obtained by the average of the azimuthally symmetric
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background estimates for each data frame, which were rescaled to have the same nominal

X-ray beam size and detector exposure time before the average. As shown in Figure 5.9,

LCP scatters a large number of photons within 3 Å resolution, and this has motivated

search for sample delivery media that scatter fewer background photons. For example,

agarose was used in Ref. [12] to reduce background scattering, although the agarose

stream tends to be unstable under ambient pressure. On the other hand, the sodium

carboxymethyl cellulose (NaCMC) and poly(ethylene oxide) (PEO) reported in Ref. [40]

and [48], respectively, produce stable streams and lower background scattering than LCP,

and therefore may be good substitutes for LCP. Another option for background reduction

is to use the fixed-target approach. As recently demonstrated in Ref. [57] and [62], rapid

data collection can be achieved by fast scanning through micro-patterned silicon chips

mounted with protein microcrystals. Nevertheless, the challenge of the chip methods is

to avoid preferential crystal orientations. Other possible methods include microcrystal

droplets deposited on low-background tape carriers [26].

Our EMC-based analysis method provides a means to make use of the crystal diffrac-

tion patterns whose signals are too noisy to be considered by the prior state-of-the-art.

In particular, the weak crystal diffraction signals can be extracted from the diffuse back-

ground scattering to obtain the Bragg intensities. This approach reduces the sample

consumption by making use of all the available data frames. The reconstruction of

the crystal volume distribution may also be useful for the development of the sample

injection technology. As shown in the proof-of-concept studies in Chapter 4, recon-

struction is feasible for crystal sizes as small as 1 to 2 µm within tolerable radiation

dose if the background scatter can be sufficiently reduced. The successful application

of our approach to SMX data collected from such small crystals will be a great advance

in protein structure determination at storage ring sources, and at the same time ease the

high demands for XFEL beamtime.
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CHAPTER 6

CONCLUSIONS

As single-particle cryoEM has become a competitive high-resolution technique for struc-

ture determination, X-ray methods have started to develop a niche in probing the dynam-

ics of biological macromolecules by external perturbations [66, 68]. In order to rapidly

excite structural changes, the probed samples have to be small in size, for example,

individual particles or microcrystals. This not only requires constant improvements in

experimental technology to measure the weak signals scattered from the small samples,

but also advanced analysis tools to extract useful information from the noise-limited

signals. Our work in this thesis serves as a timely contribution to the latter need.

The goal of this thesis is to give a theoretical overview on the development of

the EMC algorithm and its applications in structural biology using X-ray methods.

The basic principles behind X-ray diffraction measurements are described primarily in

conventions adopted by physicists, with the hope to better explain the physical meaning

of the commonly used quantities by practitioners. We also categorize the variants of the

EMC algorithm to allow a systematic choice of appropriate models in view of different

experimental conditions.

In this thesis we have discussed two main applications of the EMC algorithm— SPI

and storage-ring based SMX. The development of SPI is currently limited by the lack

of data. The rate that individual particles are intercepted by X-ray pulses is currently

insufficient to allow high-resolution 3D reconstructions. Moreover, the quality of recon-

structions is degraded by structural heterogeneity from the adsorption of non-volatile

contaminants on the particles. If these issues can be resolved, for example by advances

in injector technology, SPI could become an unparalleled tool to study the dynamics

of isolated macromolecules with time resolutions up to femtoseconds. Using the EMC
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algorithm, we have demonstrated that protein structure determination is feasible from

unindexable data frames collected from HEWL microcrystals. Once this analysis ap-

proach is shown to be applicable to weakly scatteringmicrocrystals, such as those formed

by membrane proteins, it will make SMX an attractive approach for protein structure

determination because of the wide availability of beamtime at storage ring sources. Con-

tinued development of lower-background microcrystal carrier methods will facilitate the

application of our method.
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APPENDIX A

TUTORIAL ON CRYSTAL INTENSITY RECONSTRUCTION

This appendix gives instruction on reconstructing Bragg intensities from SMXdata using

the EMC algorithm1. The default input data format for our program is cbf. We will

demonstrate the step-by-step analysis using a subset of the HEWL crystal diffraction

patterns collected by Martin-Garcia et al. at the Advanced Photon Source [48]. The

workflow of the analysis is adapted from that described in Chapter 5, and is illustrated in

Figure A.1. The program was written in C and Python, and is executed on Linux using

the MPI parallelization framework. The required packages are

• Requirements for C: gcc, OpenMPI and OpenSSL.

• Requirements for Python: Python2.7, NumPy, Matplotlib and FabIO.

• Git, X Window System.

A.1 Initialization

Here we download the data and the source code of the analysis software, and set up the

environment for data processing. The data is deposited on the Coherent X-ray Imaging

Data Bank (CXIDB) [47] and can be downloaded from the website

http://cxidb.org/data/82/raw-data

to the hard drive of a local computer cluster. The source code can be obtained by

executing the command

git clone git@github.com:tl578/EMC-for-SMX.git,

and this creates EMC-for-SMX, which is the working directory for the intensity recon-

struction. The relevant files and modules in the working directory include:

1The up-to-date tutorial can also be found at https://github.com/tl578/EMC-for-SMX/wiki.
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1. config.ini: configuration file that records the reconstruction parameters.

2. init-recon.py: python script that initializes the reconstruction.

3. aux: directory that stores auxiliary files.

4. make-detector: maps detector pixels to reciprocal space.

5. make-background: generates pixel-wise background estimates and identifies

Bragg peak candidates.

6. make-powder: generates pseudo-powder patterns.

7. make-quaternion: generates rotation samples.

8. orient-peak: finds probable orientations for each data frame.

9. reduce-data: converts data to the format used by the EMC algorithm.

10. make-Ematrix: creates mapping between Bragg peaks and detector pixels at

different orientations.

11. low-res-emc: low-resolution reconstruction using the standard update scheme of

the EMC algorithm.

12. rej-frames: rejects frames with no or multiple crystals.

13. setup-local: creates the necessary files for the high-resolution reconstruction.

14. local-update: high-resolution reconstruction using the local update scheme of

the EMC algorithm.

15. cal-CC: splits data into two halves to calculate the correlation coefficient, CC∗.

The initialization step is completed by executing the command

python init-recon.py [reduced-data-dir],

where [reduced-data-dir] is the path to the directory that will be used to store the

reduced data.
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Figure A.1: Flowchart of the analysis of SMX data using our software package.
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A.2 Data reduction

In this section, we generate the necessary files for the EMC reconstruction. This step

can be skipped by directly using the reduced data deposited on CXIDB for the HEWL

dataset, which will be explained in Section A.2.7.

A.2.1 Mapping detector pixels

We start the analysis by filling in the experimental parameters in the configuration file,

config.ini. The parameters in the [make-detector] section of config.ini are:

[make-detector]
# pixel
num_row = 2527
num_col = 2463
cx = 1285.5
cy = 1262.0
Rstop = 115.0

# meter
detd = 0.45
px = 172e-6

# angstrom
wl = 1.03324
res_max = 1.95

# beam incidence direction
sx = 0.005
sy = -0.01
sz = -1.0

The parameters num_row and num_col specify the detector size in pixels.

The pixels are labeled by coordinates (x, y), with x = 0, 1, . . . , num_row − 1 and

y = 0, 1, . . . , num_col − 1. With this choice of coordinates, the upper-left detector pixel
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has coordinates (0, 0), and the X-ray beam is incident in the −ẑ direction. Since the

main application of our program is the analysis of SMX data collected at storage ring

sources, the X-ray beam polarization is assumed to be in the ŷ direction. The parameters

(cx, cy) label the beam incidence point on the detector, and Rstop is the beamstop radius

in pixels. The other parameters include detd, the sample-to-detector distance, px, the

squared detector pixel size, wl, the incident X-ray wavelength, and res_max, the max-

imum full-period resolution of the pixels that will be considered in the reconstruction.

Finally, the vector (sx, sy, sz) indicates the beam incidence direction (does not have to

be normalized), and is typically set as (0, 0,−1).

We then move to the directory make-detector, and execute the command

python make-mask.py [path to frame] > run.log

to create the file mask.dat in the directory aux to mask out the detector gaps and the

pixels shadowed by the beamstop holder, where [path to frame] is the path to one of

the data frames in the cbf format. The files that record the mapping of the detector pixels

to reciprocal space are obtained with the commands

gcc make-detector.c -O3 -lm -o det

./det ../config.ini >> run.log.

A.2.2 Background estimation and peak finding

After moving to the directory make-background, we generate the lists of the filenames

associated with each data frame using the command

python make-filelists.py [raw-data-dir],
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where [raw-data-dir] is the path to the directory that contains the cbf files downloaded

from CXIDB. Subsequently, we update the parameters in the [make-background] sec-

tion in config.ini:

[make-background]
num_raw_data = 79992
hot_pix_thres = 1e4
qlen = 500

The execution of the command above has automatically updated the value of

num_raw_data, the total number of data frames. The parameter hot_pix_thres is

the threshold value beyond which a pixel is identified as defective and masked out. In

our analysis, we assume that the background scatter in each data frame is azimuthally

symmetric about the incident X-ray beam, and qlen represents the number of bins that di-

vide the spatial frequency magnitudes with equal spacing for the background estimation.

Finally, we execute the commands

make

mpirun -np [nproc] ./ave_bg ../config.ini > run.log &

to estimate the pixel-wise background values and identify the outlier pixels in each frame,

where [nproc] is the number of processors used in the parallel processing.

A.2.3 Lattice parameter estimation

Next, we move to the directory make-powder to estimate the lattice parameters. The

parameters in the [make-powder] section in config.ini are:

[make-powder]
min_patch_sz = 2
max_patch_sz = 10
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min_num_peak = 3
max_num_peak = 20

A Bragg peak candidate is assumed to contain at least min_patch_sz but no more than

max_patch_sz contiguous outlier pixels identified from the diffuse background scatter.

Only the data frames with at least min_num_peak but no more than max_num_peak

candidate peaks are kept for the later analysis. The enforcement of data sparsity can be

removed by making max_num_peak a large integer.

By executing the commands

gcc make-powder.c -O3 -lm -o powder

./powder ../config.ini > run.log,

wegenerate the filesframe-peak-count.dat, patch-sz-count.dat, 1d-pseudo-powder.dat

and 2d-pseudo-powder.dat. The number of candidate peaks in each data frame is

recorded in frame-peak-count.dat The file patch-sz-count.dat represents the his-

togram of the size of contiguous outlier pixels, from which we can check if the original

choice of max_patch_sz is reasonable. The file 1d-pseudo-powder.dat contains three

columns: the spatial frequency magnitudes, the counts of inter-peak distances in recipro-

cal space in each frame, and the counts of spatial frequency magnitudes of the candidate

peaks. Finally, the file 2d-pseudo-powder.dat records the maximum photon count in

each detector pixel.

In the analysis of the test dataset, we fit the lattice parameters a = 79.1 Å and

c = 38.4 Å by assuming a primitive tetragonal lattice. This choice can be assessed by

executing the command

python plot-1d-powder.py

to plot the histograms of the inter-peak distances and the spatial frequency magnitudes

of the candidate peaks. For general crystal lattices, the lattice parameters have to be
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estimated by fitting the histogram of the inter-peak distances. By executing the command

python plot-2d-powder.py,

we plot the 2D pseudo-powder pattern to check if the original estimates of the parameters

(cx, cy), the beam incidence point on the detector, and (sx, sy, sz), the beam incidence

direction, are reasonable. The whole data processing from Section A.2.1 to here should

be rerun if these parameters have to be changed. The values of the estimated lattice

parameters are stored as a 3 × 3 matrix

u[0] v[0] w[0]

u[1] v[1] w[1]

u[2] v[2] w[2]

in the file basis-vec.dat in the directory aux, where ~u, ~v and ~w denote the basis vectors

of the primitive unit cell in units of Å. This file should be created by the user for general

crystal lattices.

A.2.4 Finding probable orientations

Our next step is to narrow down the number of probable orientations for each frame by

directly rotating the centroids of the Bragg peak candidates over all rotation samples in

reciprocal space— an orientation is kept for a particular frame if at least min_num_peak

candidate peaks overlap with the predicted Bragg peaks. We begin by choosing the

parameters in the [orient-peak] section of config.ini:

[orient-peak]
res_cutoff = 4.0
VN = 15
gw = 2.0
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The parameter res_cutoff specifies the highest full-period resolution of data in unit

of Å that will be used in determining the probable orientations and the low-resolution

EMC reconstruction. The parameter VN denotes the number of voxels between the closest

Bragg peaks in reciprocal space, and gw is the radius of a Bragg peak in unit of voxel.

After updating the parameters, we move to the directory make-quaternion to gen-

erate the rotation samples with the command

python make-rot-samples.py [num_div].

The integer [num_div] specifies the angular resolution δθ = 0.944/[num_div]. An

angular resolution of at least (2gw · res_cutoff · min_rcell)/VN is required in order

to not to miss any Bragg peaks. Here min_rcell denotes the minimum peak distance

in reciprocal space, with unit of Å−1. For the test dataset, we have min_rcell = 1/a,

and the resulting angular resolution corresponds to [num_div] = 70. This command

creates the file c-quaternion[num_div].bin in the directory aux. Finally, we move to

the directory orient-peak, and execute the commands

mpicc mpi-sync-orient-peak.c -O3 -lm -o orient

mpirun -np [nproc] ./orient ../config.ini > run.log &

to find the probable orientations for each frame, where [nproc] is the number of proces-

sors to be used. The output file num_prob_orien.dat records the number of probable

orientations for each data frame.

A.2.5 Data conversion

Subsequently, we move to the directory reduce-data to convert data to the format that

will be used by the EMC reconstruction. In the [reduce-data] section of config.ini,

we have the parameters:
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[orient-peak]
nproc = 20
mpi_bgfile = [reduced-data-dir]/Data/mpi-bg_model.bin
mpi_datafile = [reduced-data-dir]/Data/mpi-datafile.bin

Here nproc is the number of processors that will be used for the EMC reconstruction,

and [reduced-data-dir] is the directory we used in Section A.1. The files mpi_bgfile

and mpi_datafile store the background estimates and photon counts of the data frames

that will be input to the EMC algorithm, respectively. In order to reduce the time spent

on reading data, the photon counts are stored as short integers. The frames with more

than max_num_peak identified peaks or no probable orientations found in Section A.2.4

will be excluded.

We generate mpi_bgfile and other auxiliary files by executing the commands

gcc reduce-data.c -O3 -lm -o reduce-data

./reduce-data ../config.ini > run.log.

The order of the frames is rearranged to balance the work loads between the nproc

processors based on the number of probable orientations per frame, and this information

is stored in the file reduced-data_id.dat. The file mpi_datafile is generated using

the commands

make

./wr-data ../config.ini >> run.log &.

A.2.6 Expansion matrix calculation

Since the crystal diffraction signals are concentrated in the Bragg spots, we can speed

up the expand (E) step of the EMC reconstruction by precalculating a look-up table that
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records the mapping between the Bragg peaks and the detector pixels over all rotation

samples. This can be done by moving to the directory make-Ematrix and executing the

commands

mpicc mpi-make-Emat.c -O3 -lm -o emat

mpirun -np [nproc] ./emat -low ../config.ini > run.log &,

where [nproc] is the number of processors to be used. The mapping is stored in the files

r2peak_file and peak2r_file, whose locations are specified in the [make-Ematrix]

section of config.ini.

A.2.7 Skipping data reduction

For thosewhowould like to try anEMC reconstruction immediately, we have provided the

reduced data generated from the HEWL dataset following the data processing procedures

described above. After creating the directory skip-data-reduction, we can download

the reduced data from the website

http://cxidb.org/data/82/reduced-data.

The downloaded files are moved to their appropriate locations by executing the command

python distribute-files.py [work-dir] > dist.log &

to get ready for the EMC reconstruction. Here [work-dir] denotes the path to the

working directory, EMC-for-SMX.
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A.3 Low-resolution EMC reconstruction

Now we proceed with the low-resolution intensity reconstruction using the standard up-

date scheme of the EMC algorithm. We first update the parameters in the [low-res-emc]

section of config.ini:

[low-res-emc]
iter_data_block = 5
prob_dir = [reduced-data-dir]/Data/high-prob
prob_orien_file = [work-dir]/aux/prob-orien.bin
reduced_data_id_file = [work-dir]/reduce-data/reduced-data_id.dat
start_phi_file = [work-dir]/aux/start-phi.dat
start_intens_file = [work-dir]/aux/start_intensity.bin

Since the data size is generally several hundred GB or more, the data frames are sep-

arated into iter_data_block blocks and read in sequentially in each EMC iteration

to save memory. The directory prob_dir stores the output files of the reconstruction.

The file prob_orien_file records the probable orientations for each data frame, and

reduced_data_id_file stores the original data frame order in reduce-data, before

the rearrangement. The files start_phi_file and start_intens_file are the initial

models for the reconstruction.

Next, we move to the directory aux to generate start_phi_file and sym-op.dat,

which stores the symmetry operators of the crystal lattice. The operations in this

paragraph can be skipped if the reduced data downloaded from CXIDB is used. By

executing the command

python init-phi.py,

the initial values of the scale factors, φk , are estimated with the average peak value in

each data frame. Two additional files start-phi-A.dat and start-phi-B.dat are also

generated by this command. These files store the scale factors for the two independent

halves of the data frames, which will be used in Section A.5. The file sym-op.dat is
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generated with the command

python make-sym-op.py

for the tetragonal crystal lattice. This file should be created by the user for general crystal

lattices.

The EMC reconstruction is started by executing the commands

make

mpirun -np [nproc] ./emc ../config.ini [iter] > run.log &,

where [nproc] should be the same as the value specified in config.ini, and [iter]

is the number of EMC iterations. The 3D intensity model is initialized by placing

3D Gaussian of random height at each Bragg position, whose values are stored in

start_intens_file. In the nth EMC iteration, our program creates two directories

in prob_dir: iter_flag-[2n − 1] and iter_flag-[2n], which store the outputs from

the updates of the intensity model and the scale factors, φk , respectively. In order to

resume a previous reconstruction, the user has to replace the files, start_phi_file

and start_intens_file, by total-phi.dat and finish_intensity.bin output in

the last iteration of the previous reconstruction. The output files from the previous

reconstruction have to be moved elsewhere to avoid being overwritten.

After the reconstruction reaches convergence, we execute the command

python move-recon-files.py ../config.ini

to create the directory low-res-recon in prob_dir, and move start_phi_file,

start_intens_file and the output files of the reconstruction there. Finally, we move

to the directory rej-frames and execute the command

python rej-frames.py ../config.ini
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to exclude the frames that contain no or multiple crystals. This command creates an

updated start_phi_file, where the excluded frames will have the scale factors, φk ,

set as zero.

A.4 High-resolution EMC reconstruction

Here we implement the local update scheme of the EMC algorithm to extend the recon-

struction to high resolution based on the converged models and probability distribution

given by the low-resolution reconstruction. We first choose the resolution cutoff that

will be used in the high-resolution EMC reconstruction. This value is specified by the

parameter high_res_cutoff in config.ini, and should be larger than res_max but

smaller than res_cutoff.

Next, we move to the directory setup-local, and execute the command

python setup-quat.py ../config.ini >> run.log &

to generate the rotation samples that will be used and the file that stores the mapping

between this rotation sampling and that used in the low-resolution reconstruction. The

angular resolution of the new rotation samples is chosen to not to miss any Bragg peaks

within the resolution high_res_cutoff. By executing the command

python setup-intens.py ../config.ini >> run.log &,

we generate the initial 3D intensity model for the high-resolution reconstruction, which

is stored in the file start_intens_file. Finally, the mapping between Bragg peaks

and detector pixels for the new rotation samples is generated using the command

python setup-Ematrix.py ../config.ini >> run.log &.
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This mapping is stored in the files local_r2peak_file and local_peak2r_file, as

specified in config.ini.

After moving to the directory local-update, we start the high-resolution recon-

struction using the commands

make

mpirun -np [nproc] ./emc ../config.ini [iter] > run.log &.

The parameter [nproc] should be the same as the value specified in config.ini, and

[iter] is the number of EMC iterations. The output files of the nth EMC iteration are

stored in the directory prob_dir/iter_flag-[n]. When the reconstruction reaches

convergence, we execute the command

python move-recon-files.py ../config.ini

to create the directory high-res-recon in prob_dir, and move start_phi_file,

start_intens_file and the output files of the reconstruction there.

A.5 Resolution estimation

We estimate the resolution of the reconstruction by calculating the correlation coefficient,

CC∗, whose value can be estimated from another correlation coefficient, CC1/2, through

Equation (5.4). Moving to the directory, cal-CC, we execute the command

python split-data.py > run.log &

to separate the data frames into two halves and generate the corresponding two config-

uration files, config-A.ini and config-B.ini, in the working directory. Independent

reconstructions using the two halves of the data frames are completed by repeating the
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procedures in Sections A.3 and A.4, with the argument, config.ini, replaced by either

config-A.ini or config-B.ini. After completing the two independent reconstructions,

we move back to the directory, cal-CC, and calculate the correlation coefficient, CC∗,

by executing the command

python cal-CC.py.

The resolution is conventionally determined by the spatial frequency magnitude where

CC∗ drops to 0.5.
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