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This paper describes a new convenient and accurate method of calculating x-ray diffraction
integrated intensities from detailed cubic bilayer structures. The method is employed to investigate
the structure of a particular surfactant system~didodecyldimethylammonium bromide in a solution
of oil and heavy water!, for which single-crystal experimental data have recently been collected. The
diffracted peak intensities correlate well with theoretical structures based on mathematical minimal
surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into
key features of the bilayer structure. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1635811#

I. INTRODUCTION

The term ‘‘liquid crystal’’ is commonly associated with
the simple polymer liquid crystal phase used in familiar
liquid crystal displays, but the term also refers to structures
with far greater complexity. Liquid crystals have a range of
diverse roles in industry, for example in the formation of
stable hydrocarbon foams, and in biological systems, as the
structural bilayer forming cell membranes.1 One particularly
interesting class of structures that can be observed in appro-
priate solutions of surfactant, oil and water are called ‘‘cubic
bicontinuous liquid crystals.’’ They have cubic unit cells and
create two nonintersecting water labyrinths separated by the
surfactant bilayer.

The connection between minimal surfaces~surfaces with
minimal area for a given perimeter! and cubic bicontinuous
surfactant liquid crystals has attracted much attention in the
past decade. Analysis of curvature and bending frustration in
the surfactant bilayers,2–4 atomic simulations,5 and phase
models6,7 indicate that minimal surfaces are strong candi-
dates for these bilayer central surfaces. However, despite
novel approaches to the complexities of modeling the intri-
cate mesophases, conclusive evidence supporting minimal
surface based structures has yet to be found.

Past research has compared x-ray diffraction data from
large numbers of randomly orientated crystallites~‘‘powder’’
diffraction! with theoretical intensity calculations based on
coarse approximations of the charge density throughout the
liquid crystal.8–12 This approach allows easy comparison
with readily obtainable experimental data and greatly simpli-
fies calculation of the theoretical intensities. However, it re-
veals little about the detailed atomic structure of the bilayer
and it gives only an indication of whether or not a particular
central surface is appropriate. On the other hand, x-ray dif-

fraction data from a single large liquid crystal allow full
space group determination, and theoretical models account-
ing for the major features of the bilayer molecular structure
give a more informative comparison with the experimental
intensity data. This paper introduces flexible and accurate
methods of intensity calculation for both multiple and single
crystal diffraction processes. These methods are used to in-
vestigate a particular surfactant system, and to add new evi-
dence to the premise that surfactant liquid crystals can have
structures whose shapes are based on minimal surfaces.

II. MINIMAL SURFACES

The liquid crystals under investigation are observed to
have translational symmetry in three principal directions, so
only triply periodic minimal surfaces~TPMS! are considered
here. In 1856 the first example of a TPMS, the double dia-
mond, was discovered and studied by Schwarz13,14 ~see Fig.
1!. Schwarz also discovered the primitive, and a closely re-
lated surface known as the gyroid was discovered by
Schoen.15 These three surfaces differ only by a simple con-
formal mapping~Bonnet transformation!. Schoen also dis-
covered the I-WP surface, which has the same symmetry
properties as Schwarz’s primitive. Many minimal surfaces
have since been discovered, and systematic methods of find-
ing minimal surfaces have been developed.16–21

Minimal surfaces can be constructed exactly from Weier-
straß parametrizations.16,22,23These parametrizations can be
represented as the inverse of composite Gauss and stereo-
graphic projection mappings from a patch of the surface to
the complex plane. Because the Gauss map is used, all points
on the surface with parallel normal vectors map to the same
point in the complex plane. The inverse mapping is thus
unable to construct the entire surface, and is used only to
produce a small fundamental patch of the surface. A com-
plete unit cell can then be built using symmetry operations
characterizing the surface~see Fig. 2!. The inverse mappinga!Electronic mail: jenlow@maths.otago.ac.nz
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is somewhat cumbersome, involving an integral with associ-
ated singularities at locally planar points on the surface, but
has been evaluated analytically for several of the surfaces of
interest.24–27

Determining suitable candidates for liquid crystal bilayer
central surfaces begins with consideration of the symmetry
properties of the liquid crystal, which places it in one of 230
possible space groups. The DDAB/oil/water system under
investigation was found to form three bicontinuous cubic
liquid crystal phases at different concentrations, with space
groups Ia3̄d, Im3̄m, and Pn3̄m ~consistent with previous
analyses10,28–31!. The second consideration is the energetic
stability of the surface, which generally favors surfaces of
low genus.32 The expected bilayer thickness relative to the
size of the unit cell also plays a role in limiting the genus of
the central surface. Of the known TPMS in the space groups
of interest here, the best candidates are the Primitive and
I-WP (Im3̄m space group!, the Double Diamond (Pn3̄m

space group! and the Gyroid and S surface (Ia3̄d space
group!.3,4,17

III. NUMERICAL CALCULATION OF RELATIVE
INTEGRATED INTENSITIES

In order to capture the full intensity contribution of the
x-ray diffraction peaks, and to minimize the effects of ex-
perimental parameters, only the ‘‘relative integrated intensi-
ties’’ of the experimental and theoretical results are com-
pared. The integrated intensity is the integral of the intensity
over the detector screen region and the crystal rotations for
which the intensity is significantly greater than background
noise. These integrated intensity values are divided by the
integrated intensity value for the first strong peak of the se-
ries to produce relative integrated intensities.

The integrated intensity at a peak identified by Bragg
indiceshkl is of the form33

I hkl}YhkluFhklu2, ~1!

whereYhkl represents the product of various correction fac-
tors ~such as the Lorentz and polarization factors!, and the
structure factorFhkl is the Fourier transform of the electron
density within a unit cell of the liquid crystal. This relation-
ship can be used for large liquid crystals made up of nonuni-
form unit cells, becoming exact as the liquid crystal size
tends toward infinity, provided that the electron density used
in the Fourier transform is that of theaverageof all unit cells
in the liquid crystal. For convenience we approximate the
average electron density, which will include deviations in the
unit cell contents as well as lattice imperfections, by a near-
ideal electron density distribution convoluted with a three-

FIG. 1. Portions of Schwarz’s double diamond~left! and primitive ~right!
triply periodic minimal surfaces.

FIG. 2. Construction of a unit cell of the gyroid minimal surface from a fundamental patch~‘‘Flackenstück’’ ! using symmetry operations.
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dimensional Gaussian. This Gaussian can be incorporated
into Yhkl , and taking its standard deviation ass, the neces-
sary factor isJhkl5exp@24p2s2(h21k21l2)#. Note that this
term is in the same form as the~relatively small9! Debye–
Waller temperature factor, which can be absorbed by increas-
ing s by an appropriately small amount.

We generate the electron density distribution for an av-
eraged unit cell by uniformly decorating the theoretical bi-
layer central surface with a given profile, which is chosen to
reflect the important features of the bilayer composition. This
decoration neglects any variation in the averaged bilayer
thickness which is consistent from unit cell to unit cell. Even
if such variation is present and significant in the experimen-
tal systems, it is probable that the existing experimental data
lack enough information to determine the variations to any
degree of accuracy~see Sec. V B!.

The minimal surfaces that are used as the bilayer central
surfaces are calculated from exact Weierstraß
parametrizations22,25–27 and stored as Delaunay triangula-
tions. The spacing of the points across the surface is concen-
trated toward regions of high Gaussian curvature, allowing
approximately 3000 triangles to accurately represent a unit
cell. At any point in the unit cell the shortest distance to the
surface is readily calculated from the triangulation, then the
electron density is assigned from the profile accordingly.

Once the electron density distribution has been described
in terms of some arbitrarily complex profile, the structure
factor is calculated by taking the Fourier transform of this
electron density distribution. To evaluate the Fourier trans-
form we use an analogous approach to that outlined by
Garstecki and Holyst,11 but without their surface and curva-
ture approximations. These approximations are necessary for
their development, and the removal of the approximations
requires a reformulation of the calculation procedure. We
begin by transforming the unit cell into dimensionless coor-
dinates~using the width of the cubic unit cell, commonly
known as the lattice parameter, as the characteristic length!.
Then d(x,y,z) , the shortest dimensionless distance from the
point (x,y,z) in the unit cell to the central surface, is calcu-
lated, and an upper boundD is determined such that

;~x,y,z!P@0,1#3, d~x,y,z!,D.

The unit cell’s volume is then divided intoM bands,
B1 ,...,BM , with band Bi representing all points (x,y,z)
such that (i 21)D/M<d(x,y,z), i (D/M ). The Fourier trans-
form of the electron density can now be calculated as

Fhkl'(
i 51

M

f ir i , ~2!

where r i is the electron density at dimensionless distance
( i 2 1

2)(D/M ) from the central surface, and

f i[E
Bi

e2p i ~h,k,l !•rd3r . ~3!

Thesef i values are bilayer-independent, and only need to be
calculated and stored once for each central surface of inter-
est. They can then be used for any desired electron density
profile. In general however, theM sample points of the elec-

tron density profile will not adequately represent all of the
profile features of interest. To compensate, we introduce a
smoothed profilef (z) based on the band valuesf i and the
maximum distance-to-surfaceD, such that

Fhkl'
M

D E
0

D

f ~z!r~z!dz. ~4!

This smoothing function must preserve the net contribution
in each band, and satisfyf (0)5 f (D)50. A convenient in-
terpolation scheme that is used here involves fitting a qua-
dratic in each band, with the requirements thatf (z) is
smooth throughoutzP(0,D) and that area is preserved~see
Fig. 3!.

IV. COMPARISON WITH STRIP MODELS

Clerc and Dubois-Violette8 developed a convenient ap-
proximation of the structure factor expression for ‘‘strip’’
models ~constant electron density out to some distanceL
away from the surface and zero beyond, see Fig. 4!. They use
the exact Weierstraß method of surface generation, but their
structure factor approximation represents constant electron
density only for locally planar regions of the bilayer central
surface, and fails when the radius of curvature is comparable
to L.11 They build the bilayer in a unit cell by decorating only
the region of the central surface which lies within that unit
cell, neglecting the contribution from parts of the bilayer
which have the corresponding central surface patch in an
adjacent unit cell~for example, portions of the bilayer that lie
in the corners of the gyroid unit cell!. Despite these short-
comings, their model is shown to correlate reasonably well
with experimental results for a number of systems. They fit
their data to the experimental results using two parameters,
the step function half-width and the mean atomic displace-
ment in the temperature factor. Their results, together with
results from the methods of this work~when restricted to the

FIG. 3. Area-preserving quadratics are fitted to thef i values.

FIG. 4. Step function electron density profile.
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simple strip model profile!, are shown in Table I, where in all
cases the parameters optimized for their model are used.
These parameter values are suboptimal for the more accurate
methods used here.

Garstecki and Holyst extend Clerc’s strip model by in-
troducing a correction factor, independent of the bilayer
width, in an attempt to reduce the errors associated with the
structure factor approximation.11,12 For convenience they no
longer consider exact minimal surfaces, but rely on simple
parametric approximating surfaces based on Fourier
expansions.17,34 They propose this variation of Clerc’s
method as a standard method of investigation, and suggest
that it may be appropriate for modeling any electron density
profile as a weighted combination of~approximately! uni-
form films, which is similar to the approach used in this

work. They provide convenient tables of values for a collec-
tion of approximated surfaces, and demonstrate that their
method produces good correlation with existing experimen-
tal data sets. With their correction factors, the nonuniformity
of the approximated film which decorates the central surface
introduces only minor errors for small film thicknesses, but
still causes failure of the model further from the bilayer cen-
tral surface. Figure 5 shows absolute intensities versus film
half-thickness for two peaks of the gyroid minimal surface,
illustrating the behavior of their approximations. While their
method is clearly a useful tool for simple film decorations,
the inherent approximating errors make it less likely to be a
good choice for the sensitive process of detailed electron
density profile determination.

Harper et al.35,36 also generate Fourier amplitudes for

TABLE I. Comparison of experimental and modeled relative integrated intensities from Ref. 8 with the models
presented here~restricted to ‘‘strip’’ profiles matching those used by Clercet al. and thus restricting the present
model’s ability to provide an optimal match to the experimental data!. The starred data set represents a bilayer
half-thickness of 0.125, a rough estimate by Clerc from geometrical considerations, rather than 0.098 in the
unstarred data set~Clerc’s fitted value!. The 1 symbols represent small values~<2!.

hkl

Lecithin Galactolipid

Experimental
Model

~Ref. 8!
This
work

This
work* Experimental

Model
~Ref. 8!

This
work

211 100 100 100 100 100 100 100
220 37 34 42 39 62 36 44
321 1 0 0 0 1 1 1
400 2 4 5 0 9 7 9
420 1 1 1 0 3 3 4
332 1 1 1 4 5 3 5
422 1 0 0 2 1 1 1
431 1 0 0 2 0 0 0
521 1 0 0 0 0 0 0
440 1 0 0 0 0 0 0
611 3 1 1 2 4 0 0
532 1 0 0 0 2 0 0
620 0 0 0 0 0 0 0

FIG. 5. Absolute integrated intensity vs film half-thickness for two peaks of the gyroid minimal surface. Approximation in the structure factor expression and
bilayer construction causes inaccuracies with the method of Garstecki and Holyst, which become large as the film thickness increases.~Note that dimension-
less half-thicknesses over 0.1 represent large volume fractions above 55%, thus most systems are fairly well modeled using Garstecki and Holyst’s methods.!
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step function electron density profiles decorating minimal
surfaces, but use a more accurate and computationally in-
volved method than Clercet al.Exact~Weierstraß! equations
are used to generate patches of the minimal surface, which
are then accurately approximated using parametric equations.
The surfaces are triangulated, allowing for convenient calcu-
lation of surface integrals. The Fourier amplitudes of the bare
minimal surface are compared to results from several other
methods, with excellent agreement. Fourier amplitudes of
strip models are evaluated by transforming the volume inte-
gral in the structure factor to a surface integral via the Abbe`
transformation. Harper’s method is theoretically equivalent
to the method presented in this paper when restricted to strip
profiles. However, due to their computationally different ap-
proaches, a comparison of the respective results provides a
good check that the small approximations in both methods
have negligible adverse effects. In Table II, integrated inten-
sities based on Harper’s Fourier amplitudes are compared to
the results of this work for thin strip decorations of the
double diamond minimal surface. A similarly close match is
found for decorations of the primitive and gyroid surfaces.
While the two methods of relative integrated intensity com-
putation produce essentially the same results for step-
function profiles, the method presented here is not limited to
this simple case, but allows convenient integrated intensity
calculation for any profile. This allows a more detailed
analysis of the bilayer structure, and correspondingly better
agreement between modeled and experimental relative inte-
grated intensities.

V. SINGLE LIQUID CRYSTAL COMPARISON

Accurate experimental integrated intensity measure-
ments are required in order to develop more detailed electron
density profiles. Experimental single crystal data recently ob-
tained by McGrath and Tate37 provide a good foundation for
investigation, and include integrated intensity measurements
for liquid crystal phases with space groupsPn3̄m, Im3̄m,
andIa3̄d ~those of the double diamond, primitive and gyroid

minimal surfaces, respectively!. Empirically determined pa-
rameters from the single crystal experimental samples are
shown in Table III. The surfactant used is didodecyldimethy-
lammonium bromide~DDAB!, in a solution of heavy water
(D2O) and dodecane. The liquid crystalline domains are
large ~of the order of 1 mm!, and exhibit small mosaic
spreads of 0.7° (Ia3̄d) to 3° (Im3̄m).

While precise empirical determination of the electron
density profile is not possible, a few simple assumptions al-
low estimation of the tail-chain length, the bilayer thickness
and the volume fractions. Assuming that the disassociated
bromide ions contribute little to the bulk charge, the average
electron density of the water region is approximately
333e nm23. That of the hydrocarbon tail region is approxi-
mately 300e nm23.35 The electron density in the head group
region is unknown, but assuming a head group volume~in-
cluding the nitrogen atoms and the methyl groups! of 0.2
times the tail-chain volume permits calculation of the param-
eters given in Table IV from the compositions by weight %
in Table III. These approximate values are in reasonable
agreement with those for similar systems12,30,38 and give a
starting point for the determination of the electron density
profile.

A. Step-function profiles

If the primary electron density contrast is assumed to be
between the water and hydrocarbon regions then the electron
density profile may be modeled, as a first approximation,11,12

by a simple step function profile. When combined with a
large value ofs in Jhkl , or equivalently a large temperature
factor ~as used in Ref. 8!, the nonphysically sharp electron
density contrast is smoothed, giving a gentle transition and
allowing a better match to experimental data. Results for
step-function profiles are given in Tables V and VI, withL
taken to be the bilayer half-thickness values shown in Table
IV. The dimensionless Gaussian standard deviations has
been chosen to best fit the experimental results, and when
multiplied by the characteristic unit cell length, the optimal
values fall between 1.2 and 1.5 nm, indicating significant

TABLE II. Relative integrated intensity comparison for thin strips of con-
stant electron density decorating the double diamond minimal surface. Re-
sults for three dimensionless film half-thicknesses are shown.

hkl

Double diamond

l 50.02 l 50.16 l 50.20

Harper
This
work Harper

This
work Harper

This
work

110 97.9 97.8 100.0 100.0 100.0 100.0
111 100.0 100.0 76.3 76.4 62.1 62.2
200 28.8 29.0 9.8 9.8 3.1 3.1
211 19.1 18.7 3.0 2.9 0.1 0.1
220 27.1 27.4 0.8 0.7 1.0 1.0
221 32.2 32.2 0.2 0.2 2.4 2.4
310 14.5 14.6 0.0 0.0 1.1 1.1
311 3.9 4.0 0.0 0.0 0.3 0.3
222 34.0 34.3 0.7 0.6 6.0 5.9
321 3.7 3.6 0.2 0.2 0.6 0.6
400 8.2 7.9 0.5 0.5 0.7 0.7
322 13.7 13.5 1.3 1.3 1.7 1.6

TABLE III. Experimental parameters for the DDAB/C12H26 /D2O system.

Pn3̄m Im3̄m Ia3̄d

Lattice parameter~nm! 12.793 16.459 31.335
DDAB ~wt %! 31.37 30.25 20.92
Dodecane~wt %! 5.49 6.30 2.88
D2O ~wt %) 63.14 63.45 76.20

TABLE IV. Parameters derived from the compositions by weight given in
Table III. Volumes are given per unit cell.

Quantity Units
Double

diamond Primitive Gyroid

Tail volume nm3 712 1512 6858
Head group volume nm3 142 302 1372
Bilayer volume fraction 0.408 0.407 0.267
Hydrocarbon tail length nm 1.14 1.20 1.10
Bilayer half-thickness nm 1.39 1.45 1.34
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disorder in the experimental liquid crystal. The value for the
Ia3̄d ~gyroid! phase is consistent with the values observed
for step-function profiles in Ref. 8 for other gyroid-based
systems~0.02<s<0.06!.

We eliminate the unbalanced I-WP and the high-genus S
minimal surfaces as candidates for the bilayer central sur-
faces based on the results shown in Table VI. In particular
the 211 peak of theIm3̄m experimental results is poorly
modeled by the I-WP surface, and the S surface gives con-
sistently low correlation withIa3̄d experimental figures. Us-
ing detailed electron density profiles does not improve the
results significantly for these surfaces.

B. Detailed electron density profiles

Construction of a more detailed electron density profile
~that provides a better match to the experimental relative
integrated intensities! allows further insight into the surfac-
tant bilayer structure. The major scattering features of the
DDAB/oil/water system are located at the bilayer central sur-
face and within and near the head group region. A decrease
in the electron density near the bilayer central surface is ex-
pected because of the higher probability of finding low-
density hydrocarbon terminal methyl groups in the vicinity.
The oil will reduce this effect to some extent, so it is unlikely
that this will be the primary scattering feature that it is in
other systems.35,36 The scattering features of the outer por-
tions of the bilayer will be determined by the relatively well-
ordered head group atoms and their associated bromide
counter-ions, both of which tend to increase the electron den-
sity ~above that of the bulk water regions!, and the methyl
units attached to the head groups, which tend to reduce the
electron density. It is not clear in advance whether the net
effect will be best modeled by a single peak in the electron
density, or by two or three closely spaced peaks in the vicin-
ity of the head group location.

The calculation methods described in Sec. III allow
complete freedom in choosing a model for the electron den-
sity profile, and we are limited in refining that model only by
the experimental data~in particular the accuracy of the data
and the number of significant peaks! together with our ability
to optimize the parameters in the model. In this optimization,

TABLE V. Primary results, single crystal experimental relative integrated intensities compared to modeled values. The experimental values include the
Lorentz correction factor, and the theoretical values naturally account for the Debye–Waller factor in their Gaussian distributions. The parameter s has been
fitted to the experimental data. The error measure is the sum of the squares of the differences in relative integrated intensities. The ‘‘Full profile’’results are
described in Sec. V B.

hkl

Double diamond Primitive Gyroid

Experimental
Step

function
Full

profile Experimental
Step

function
Full

profile Experimental
Step

function
Full

profile

110 100.0 100.0 100.0 100.0 100.0 100.0
111 51.4 52.2 51.4
200 8.6 6.4 9.1 79.7 84.0 80.5
211 3.4 1.1 2.3 35.0 29.7 34.8 100.0 100.0 100.0
220 1.7 0.4 1.8 0.3 0.1 0.4 51.4 40.1 50.1
221 1.4 0.2 1.4
310 0.1 0.0 0.6 0.9 0.4 0.5
311 0.0 0.0 0.1
222 0.4 0.0 0.5 5.7 3.4 5.7
321 0.0 0.0 0.0 1.3 0.5 0.9 0.3 0.7 0.0
400 0.0 0.0 0.0 2.4 0.3 0.7 4.5 10.4 6.5
322 0.1 0.0 0.0
411 0.5 0.1 0.4
330 0.1 0.1 0.3
420 0.0 0.0 0.1 3.4 6.0 2.3
332 0.3 0.0 0.1 7.4 8.4 7.5
422 0.1 0.0 0.0 3.2 2.6 1.9
431 0.0 0.0 0.0 2.5 1.1 1.4
521 0.0 0.0 0.0 0.0 0.1 0.4
440 0.0 0.0 0.0 2.0 0.0 0.1

s 0.118 0.134 0.071 0.104 0.045 0.076
Error 14 2 58 4 177 14

TABLE VI. Single crystal relative integrated intensity comparison for I-WP
and S minimal surfaces, based on a step function electron density profile.

hkl

Experimental
Im3̄m

I-WP
Surface hkl

Experimental
Ia3̄d

S
Surface

110 100.0 100.0 211 100.0 100.0
200 79.7 80.5 220 51.4 15.2
211 35.0 2.2 321 0.3 7.2
220 0.3 2.8 400 4.5 11.0
310 0.9 4.8 420 3.4 0.1
222 5.7 0.8 332 7.4 0.1
321 1.3 0.0 422 3.2 0.0
400 2.4 0.1 431 2.5 0.0

s 0.111 s 0.131
Error 1129 Error 1481
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the scalar objective function is taken to be the sum of the
squares of the differences in relative integrated intensities
between experimental data and theoretical models. Due to
the complex interactions in the diffraction process, variations
in the model parameters produce changes in this objective
function that are generally not easy to predict. Finding opti-
mal values for models with more than two or three param-
eters can be difficult. The parameter space in such models
generally produces objective function values with awkward
features, such as multiple local minima, small regions of low
error that are difficult to find, and regions of instability~large
variations for small changes in the parameters!. This limits
the usefulness of automated optimization techniques such as
the downhill simplex method and the conjugate gradient
method. If we restrict ourselves to models with only a few
degrees of freedom, then we are able to determine the value
of the objective function throughout our parameter space,
giving a full description of the error~including the location
of the global minimum!. With this in mind we seek the
model with the lowest number of parameters that gives a
good fit to the experimental data in all three cases.

1. Three Gaussian model

The first improvement on the simple step function model
consists of three Gaussians, one representing the lowered
electron density in the tail region, and the other two repre-
senting the head group contributions~with one on each side
of the bilayer!. The relative integrated intensity results are
invariant under linear transformations of the electron density
~and hence the electron density profile!, so we arbitrarily fix
the size of the tail Gaussian without loss of generality. We
then assign parameters to the size and position of the head
group Gaussian. The resulting errors are graphed in Fig. 6 for
the gyroid minimal surface. The best fit is obtained when the
head group Gaussian is positioned well within the tail region,
giving an error of 20. This Gaussian position is however
inconsistent with the chemical composition of the bilayer.
Experimental error and model limitations play key roles in
determining this optimal position, so, rather than focusing
solely on the best fit, we will instead look at the regions

where the fit is good and the bilayer parameters lie within
expected ranges. Figure 7 shows the effects of varying the
Gaussian position on the minimal error and on the corre-
sponding optimal Gaussian area. Relatively good fits are ob-
tained ~error,100! for Gaussian positions from 0.32 nm
through to 1.25 nm. In all cases this Gaussian contributes a
small local increase in the electron density, which we at-
tribute to the relatively well-ordered nitrogen molecules in
the surfactant head group region. We thus expect the location
of these Gaussians to be approximately equal to the length of
the hydrocarbon tail chain, which is estimated to lie in the
range 1.0–1.3 nm for DDAB systems.28,38,39The experimen-
tal liquid crystals under consideration have only a small
amount of oil added, so we would expect better fits towards
the lower end of this range.

For the double diamond and primitive based structures,
the graphs corresponding to Fig. 6 show large regions of
nearly optimal parameter values. Considerably less informa-
tion can be obtained in these cases, consistent with their
nearly featureless experimental intensity distributions~see
Table V!. Fixing the head group Gaussian position at 1.0 nm
~based on the gyroid analysis! results in the optimal profiles
shown in Fig. 8. The area of the head group Gaussians in the
gyroid profile is significantly different than that of the primi-
tive and double diamond profiles, and the associated error in
the case of the gyroid is relatively large~87 versus 10 for the
primitive and 8 for the double diamond!. This implies that
the model is too simplistic to fit the experimental data well,
motivating the inclusion of extra Gaussian distributions.

2. Five Gaussian model

We find that a five Gaussian model provides consider-
ably improved correlation with the experimental intensity
data. In this model one Gaussian is centered on the bilayer
central surface and the other four are fixed in position in the
vicinity of the head group region~two on each side of the
bilayer!. The widths of the Gaussians are approximated em-
pirically, and the results are not particularly sensitive to the
values chosen. As before we fix the area of the central Gauss-
ian without loss of generality, leaving two parameters to be
fitted ~the areas of the remaining two Gaussians!. A unique
minimum is present for all three phases of liquid crystal con-

FIG. 6. Errors associated with parameter variation in the three Gaussian
model using the gyroid minimal surface. The parameters represent the po-
sition of the head group Gaussian~nm from the central surface! and the area
under the Gaussian~in e nm21).

FIG. 7. Effects of varying the head group Gaussian position for the three
Gaussian model using the gyroid minimal surface. This graph shows both
the minimum error~dashed line! and the optimal Gaussian area~solid line!
for a range of positions of this Gaussian.
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sidered, with the corresponding electron density profiles be-
ing very similar~see Fig. 9!. The resulting relative integrated
intensities are tabulated in the ‘‘full profile’’ columns of
Table V.

The minor differences between these three optimal pro-
files are likely to be a result of surfactant and oil concentra-
tion and the central surface properties. Other factors may
significantly contribute to these differences, including ex-
perimental error and temperature effects. We attribute the
positive Gaussian to the relatively well-ordered head group
atoms, and the negative Gaussian to the outer methyl groups
attached to the nitrogen atoms in the head groups. The mag-
nitude of these Gaussians, relative to that of the central nega-
tive Gaussian~which represents on average a 33e nm22 re-
duction from the electron density of bulk water!, are
considerably larger than expected. In addition, given the

flexibility of multiple parameter models, the particular pro-
file model that was chosen is unlikely to be unique in pro-
viding a close match to the experimental data. It would be
informative to compare the profiles of Fig. 9 with those for
lamellar or micellar phases of the ternary mixture, especially
to determine whether the large head group Gaussians are a
true feature of the DDAB bilayers. However, all three phases
produce similar optimal profiles with this model, the match
is simultaneously excellent for all three surfaces, and the
profiles represent a simple bilayer configuration based on
empirical data. These points indicate that the profiles should
represent the gross features well. Most important, the consis-
tently high correlation between experimental and theoretical
results adds significant weight to the premise that surfactant
liquid crystals can form structures whose shapes are based on
mathematical minimal surfaces.

Clearly the use of a full profile rather than a simple film
decoration allows a better match to the experimental data.
The methods of Sec. III provide a sound framework for de-
tailed studies involving complex profiles. In addition, the
approximated structure factor equation developed by
Garstecki and Holyst@Eq. ~24! in Ref. 11# provides a direct
and simple method of obtaining a near-optimal profile, which
could then be checked and refined~if necessary! using the
methods presented here. With these methods, using a detailed
electron density profile is no longer a difficult and computa-
tionally intensive task, and good control of numerical and
modeling errors can be maintained.

VI. CONCLUDING REMARKS

In this paper we give an accurate and computationally
efficient method of relative integrated intensity calculation
for bilayers centered on triply periodic surfaces. The method
described is limited to a fixed electron density profile deco-
rating the central surface in the averaged unit cell of the
liquid crystal, but places no restrictions on that profile. It
provides the accuracy benefits of using true minimal sur-
faces, and makes no curvature approximations. We demon-
strate that the method produces results consistent with pub-
lished data, and improves on the results in Refs. 8 and 11.
Using this method we fit Gaussian-based electron density
profiles to x-ray diffraction data from single crystal experi-
mental samples of a DDAB/oil/water surfactant system. We
find very high correlation of relative integrated intensity val-
ues between samples of theIa3̄d, Im3̄m, andPn3̄m phases
and the corresponding theoretical models. We find that the
primitive, double diamond and gyroid minimal surfaces are
consistent with the experimental data, and we eliminate the S
and I-WP minimal surfaces as candidates for these liquid
crystal phases. This analysis provides further evidence in
support of the premise that minimal surfaces are a fundamen-
tal feature of bicontinuous cubic liquid crystalline structures.
The methods described provide a sound framework for de-
tailed investigation of small angle x-ray diffraction data ob-
tained for other cubic systems.

FIG. 8. Electron density profiles for the three Gaussian model, with the head
group Gaussians fixed at 1.0 nm from the bilayer central surface. Relative
integrated intensity is invariant under linear transformations of the electron
density, so the vertical axis scaling is arbitrary.

FIG. 9. Fitted DDAB electron density profiles for the five Gaussian model.
Relative integrated intensity is invariant under linear transformations of the
electron density, so the vertical axis scaling is arbitrary. The corresponding
peak intensities are shown in Table V.
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