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Advances in synchrotron radiation light source technology have opened new

lines of inquiry in material science, biology, and everything in between. How-

ever, x-ray detector capabilities must advance in concert with light source tech-

nology to fully realize experimental possibilities. X-ray free electron lasers

(XFELs) place particularly large demands on the capabilities of detectors, and

developments towards diffraction-limited storage ring sources also necessitate

detectors capable of measuring very high flux [1–3]. The detector described

herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework,

developed previously by our group to perform high dynamic range imaging,

and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the

European XFEL by a collaboration between Deustsches Elektronen-Synchrotron

(DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the

University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combin-

ing adaptive gain with charge removal techniques to increase dynamic range in

XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared

laser. The strategy is incorporated into pixel prototypes which are evaluated

with direct current injection to simulate very high incident x-ray flux.

A fully functional 16x16 pixel hybrid integrating x-ray detector featuring

several different pixel architectures based on the prototypes was developed.

This dissertation describes its operation and characterization. To extend dy-



namic range, charge is removed from the integration node of the front-end am-

plifier without interrupting integration. The number of times this process oc-

curs is recorded by a digital counter in the pixel. The parameter limiting full

well is thereby shifted from the size of an integration capacitor to the depth of

a digital counter. The result is similar to that achieved by counting pixel array

detectors, but the integrators presented here are designed to tolerate a sustained

flux >1011 x-rays/pixel/second. In addition, digitization of residual analog sig-

nals allows sensitivity for single x-rays or low flux signals. Pixel high flux lin-

earity is evaluated by direct exposure to an unattenuated synchrotron source x-

ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are

made. Detector sensitivity to small signals is evaluated and dominant sources

of error are identified. These new pixels boast multiple orders of magnitude

improvement in maximum sustained flux over the MM-PAD, which is capable

of measuring a sustained flux in excess of 108 x-rays/pixel/second while main-

taining sensitivity to smaller signals, down to single x-rays.
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CHAPTER 1

INTRODUCTION

X-rays are used to obtain structural information about samples on the atomic

scale. This experimental probe finds applications in fields from material science

to biology and everything in-between. Each experiment requires an x-ray light

source and a sample, but they also require a suitable x-ray detector or means of

measuring the experimental output. New x-ray light sources require new x-ray

detectors with commensurate capabilities. This thesis outlines the development

of such a detector suitable for use at new, high brightness x-ray sources. By

extending the measurable dynamic range, light sources can be utilized to their

full potential.

1.1 X-ray diffraction

To probe matter on the atomic scale, we need photons with wavelengths of the

appropriate size. Visible photons have wavelengths that are several hundreds

of nanometers. These photons interact with a large number of atoms simul-

taneously when they strike an object because atomic spacing in matter is on

the order of angstroms, 10−10m. This corresponds to a photon energy of }c
λ

=

12.4keV, which is the realm of x-rays. To understand how x-rays interact with

matter, we will base our discussion on the derivation of the Von Laue formu-

lation of x-ray diffraction in Solid State Physics by Ashcroft and Mermin [6].

To simplify the discussion, we will assume that the scattering of photons from

matter is elastic, meaning that no energy is lost in the scattering process, and

thus the wavelength of scattered light is the same as the wavelength of incident
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light.
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Figure 1.1: Two scattering bodies separated by ~d. Radiation is incident with
wave vector ~k and radiation is scattered with wave vector ~k′ The path length
difference between light scattering from one point versus the other is ~d · (n̂ − n̂′).

Consider two small scattering bodies separated by a vector ~d as depicted in

Figure 1.1. Assume that light arrives at the bodies from very far away so that

the incident wave vector of each photon is parallel. The wave vector is defined

as ~k ≡ 2πn̂
λ

where n̂ is the unit vector parallel to ~k. Consider scattered photons

with wave vector ~k′ ≡ 2πn̂′
λ

. To interfere constructively, the difference in length

between the two paths must be an integer multiple of the light’s wavelength:

~d · n̂ − ~d · n̂′ = ~d · (n̂ − n̂′) = mλ (1.1)

where m is an integer. Multiplying both sides of the equation above by 2π
λ

yields

~d · (~k − ~k′) = 2πm. (1.2)
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Now applying Euler’s formula,

eix = cos(x) + i sin(x), (1.3)

we find that ∣∣∣∣ei(~k−~k′)·~d
∣∣∣∣ =

∣∣∣ei2πm
∣∣∣ = |cos(2πm) + i sin(2πm)| = 1. (1.4)

Finally, we can define ~K to be the change in wave vector of the scattered light:

∣∣∣∣e−i~K·~d
∣∣∣∣ = 1. (1.5)

To reiterate, the equations above specify, in general terms, the spatial rela-

tion required for two bodies to scatter light that will interfere purely construc-

tively. From this calculation we can in theory perform a simple experiment to

measure the distance between two atoms, given that we scatter monochromatic

light from them and measure the angle at which the scattered light interferes

constructively. Of course we would often like to image matter that is composed

of more than two atoms.

Interestingly, Equation 1.5 is precisely the definition of the reciprocal lattice

for a Bravais lattice with points at ~d. Many sources exist for a rigorous discus-

sion of Bravais lattices and crystals in general (for example see [6, 7]). Here we

will outline the concept briefly.

A given Bravais lattice is defined by its basis vectors. In three dimensions

a set of Bravais basis vectors may be any three vectors which do not lie in the

same plane, and the corresponding Bravais lattice is the collection of all points

of the form ~d = m1 ~a1 + m2 ~a2 + m3 ~a3 where m1, m2, and m3 are integers and ~a1,

~a2, and ~a3 are the basis vectors [6]. Bravais lattices are used to describe crys-

talline materials, materials in which all of the constituent atoms are arranged
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periodically. The magnitudes of a Bravais lattice’s reciprocal lattice vectors are

inversely proportional to atomic spacing and their direction is perpendicular to

atomic planes. Specifically, for lattice vectors ~a1, ~a2, and ~a3, the reciprocal lattice

vectors are

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
, (1.6)

~b2 = 2π
~a3 × ~a1

~a1 · (~a2 × ~a3)
, (1.7)

and

~b3 = 2π
~a1 × ~a2

~a1 · (~a2 × ~a3)
. (1.8)

In the case of crystalline materials, equation 1.5 leads to the conclusion that

for constructive interference, the change in the incident wave vector must be a

linear combination of reciprocal lattice vectors. In this context, Equation 1.5 is

equivalent to the familiar Bragg condition,

2d sin θ = mλ, (1.9)

where d is the spacing between atomic planes, m is a positive integer, θ is the

angle of incidence relative to the atomic planes, and λ is the wavelength. The

derivation above does not assume specular reflection or a particular arrange-

ment of atoms. The mathematical formalism gives us a rigorous framework to

understand diffraction due to elastic scattering. In a more intuitive sense how-

ever, we find that atomic spacing can be measured by the angle at which x-rays

scatter constructively from a sample.

The work above can be used to understand scattering from non-periodic

arrangements of atoms as well. Note that Equation 1.2 specifies the condition
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for purely constructive interference. More generally, e−i~K·~d is the difference in

phase factors between photons scattered at the origin and photons scattered at

~d [7]. Suppose we define some function ρ(~d) to be the electron density of an

object at all points in space. Assume that the amplitude of a wave scattered

from a volume element dV is proportional to the electron density of the volume

element. The amplitude of electric and magnetic fields for radiation scattered in

the direction ~k′ will be proportional to the integral over all space of the electron

density function multiplied by the term describing the phase relationship [7].

Specifically, the scattering amplitude, F, is

F =

∫
~R

e−i~K·~dρ(~d)dV. (1.10)

Note that equation 1.10 is the Fourier transform of the spatial distribution of

the electron density. In this light, scatter from a periodic arrangement of atoms

is a special case in which the spatial frequency of electron density is dominated

by a discreet set of frequencies, thus sharp peaks are observed in x-ray diffrac-

tion from crystals. However, diffraction is measurable from any scattering body.

Note that the situation is more complicated when the energy of incident radia-

tion is close to the energy of an electron transition in the diffracting atoms. This

leads to so called resonant scattering which involves results of the incident x-

rays altering the distribution of electrons in the sample. For more information

on this phenomena see sources such as [8, 9].

Of course, diffraction is not the only useful measurement that can be per-

formed with x-rays. Radiography relies on the transmission of x-rays to gain

information about density variations in the material being imaged. More dense

materials absorb or scatter more x-rays, and so regions of a sample which trans-

mit a larger fraction of incident x-rays are less dense. This is the general tech-
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nique employed in most medical x-ray imaging. Fluorescence can be utilized

to map the elemental constituents of a sample. X-rays of the correct energy

excite inner-shell electrons in atoms to outer shells or ionize the atoms com-

pletely. When an electron subsequently drops in energy to fill the now under-

filled orbital, light is emitted with energy equal to the change. This results in

characteristic energies for each element, and by exciting the atoms of a sample

and measuring the resultant fluorescence, the atomic constituents of the sam-

ple can be uncovered. Many more techniques utilizing x-rays to make useful

measurements exist, but this dissertation work focuses primarily on diffraction

experiments.

1.2 Experimental requirements

With an experimental probe for atomic scale information of a sample established

in theory, we arrive at the question: what is required to perform these measure-

ments in practice? The intricacies of experimental design and execution could

fill volumes and vary drastically between each particular implementation. We’ll

settle here for a more basic treatment. To study a sample with x-ray diffraction

requires a suitable x-ray source, a sample from which the x-rays will scatter, and

a device with which to detect the scattered x-rays.
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1.2.1 Light sources

X-ray tube sources

The most common x-ray source in a laboratory is an x-ray tube source. An

overview of a tube source’s operation is outlined below.

Electrons are emitted from a filament. The electrons are accelerated through

a very high electric field created by a voltage difference between an anode and

a cathode. Electrons then strike the anode. X-rays are generated primarily

through two processes [10]. Bremsstrahlung radiation, or braking radiation, is

the result of electrons decelerating in the anode material. The product is a broad

spectrum of photons whose energies are limited by the voltage across which the

electrons were accelerated. The second process involves the excitation of inner

shell electrons in the anode material. Electrons are ejected from atoms in the

anode, and when an electron drops in energy to take this now vacant set of

quantum numbers, the change in energy is released as a photon. This results in

distinct photon energy emissions that vary based on the anode material.

With an x-ray tube source, the primary limitation on maximum x-ray flux

obtainable is the rate at which energy deposited in the anode as heat can be

drawn away. Only about ∼ 0.2% of the power, electron current multiplied by

acceleration voltage, is actually converted to x-ray radiation [10]. To increase

the maximum flux of tube sources, some sources employ a large, constantly

moving anode that allows deposited heat to be distributed over a larger area.

More recently, sources with a liquid metal anode have been implemented [11].

However, synchrotron radiation facilities dwarf tabletop x-ray production and

will be discussed in the next section.
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Synchrotron radiation facilities

Synchrotron radiation facilities have evolved significantly since their inception

over 50 years ago [12]. A synchrotron is a particle accelerator in which charged

particles are set to run in a closed path at relativistic speeds. Further accelera-

tion of these charged particles produces radiation with specific characteristics.

Precise control of this acceleration allows production of light with a variety of

useful properties.

At present, over 50 synchrotron facilities are in operation worldwide, with

12 of these being so-called third generation sources [13]. Still more synchrotrons

are under construction as the demand for beam time among scientists is far

greater than its supply. Synchrotrons utilize bending magnets, wigglers, and

undulators to produce intense, collimated x-ray beams [14]. Figure 1.2 is a car-

toon depiction of radiation from these devices.

Figure 1.2: LEFT: a bending magnet steers an electron beam and produces ra-
diation throughout the curved motion. MIDDLE: A wiggler induces sinusoidal
motion in an electron beam and produces a cone of radiation which sweeps
from side to side. RIGHT: An undulator induces sinusoidal motion in an elec-
tron beam and produces a cone of radiation which maintains an overlapping
portion while sweeping from side to side. Figure adapted from [15].
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Bending magnets are used to steer electron beams via the Lorentz force, but

the acceleration that they cause also produces radiation. At synchrotrons, rela-

tivistic effects compress the emitted radiation into a cone with an opening angle

in radians proportional to 1
γ

where γ is the Lorentz factor [14]. Wigglers and

undulators are used at sychrotrons, in addition to bending magnets, to generat-

ing radiation with useful properties. Wigglers are a series of bending magnets

with alternating polarity which produce no net deflection of the electron beam.

Undulators have the same magnetic structure as wigglers, but the deflection

caused by their magnetic fields is small enough that the cone of radiation gen-

erated at each bend maintains an overlap in space. This causes interference of

the radiation emitted at each turn which permits generation of highly coherent

beams with sharp energy spectra [14].

In third generation light sources, light is typically emitted in pulses with

tens of picoseconds duration and tens of nanoseconds gaps between pulses [12].

Shorter pulses are achievable through techniques such as electron bunch slicing

at the cost of beam intensity. The energy of x-rays produced in modern sources

is often tunable. The light produced is typically linearly polarized in the plane

of acceleration. Some sources have tunable polarization as well.

An important metric in comparing light sources is brilliance. Brilliance is a

property inherent to the light source and serves to compare sources both within

and between synchrotron generations. The metric is defined as [16]

#photons
second ∗ mrad2 ∗ mm2 ∗ 0.1%BW

. (1.11)

The value begins with total x-ray flux, photons/second. The value is then
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divided by a quantity with dimensions of area. This quantity is the source

size. An ideal light source will have an infinitesimally small source size. Fur-

ther, the quantity is divided by a term with units of mrad2. This quantity de-

scribes the divergence of a light source. Minimal divergence is desirable such

that the light source is angularly collimated. Finally, the brilliance of a source

includes information about its monochromaticity. The 0.1%BW term describes

how much of the total flux falls within 0.1% of the desired bandwidth. Com-

paring a light bulb to a table-top laser, we find that while the light bulb may

produce more photons in total, the laser may actually have a higher brilliance,

as its light is more monochromatic and better collimated. Ultimately, all light

sources must obey the diffraction limit which is related to the lateral coher-

ence of the source [16]. The source’s longitudinal coherence is related to its

monochromicity. The coherence of a light source is closely related to its bril-

liance [16]. Third generation sources presently reach average brilliances on the

order of 1021 photons
second∗mrad2∗mm2∗0.1%BW , and could theoretically be increased by 1-3 or-

ders of magnitude.

X-ray free electron lasers

A new synchrotron technology further expands the possibilities of x-ray science

by producing x-ray beams with some unprecedented characteristics. X-ray free

electron lasers (XFELs), produce exceedingly brilliant x-ray beams by utilizing

the interaction of light with the very electrons that produce synchrotron radia-

tion [12]. The result is an x-ray beam consisting of extremely short, extremely

brilliant x-ray pulses. Specifically, FELs internally modulate the density of the

electron bunches used to generate synchrotron radiation. This density modula-

10



tion is achieved primarily through two strategies: seeding with an external laser

and self amplified stimulated emission (SASE) [13].

In the seeding process, seed light supplied by an external laser travels along

the electron flight path. As the electrons enter an undulator, the electric fields

of the seed light compress electron bunches and spaces them according to the

wavelength of the seed light [13]. The microbunching of electrons yields syn-

chrotron pulses of very short duration with very high coherence. In SASE, the

same process occurs, but rather than an external laser modulating the electron

bunches, a suitably long undulator is used such that radiation produced at the

start of the undulator has time to perform the desired spatial redistribution [13].

The result is analogous and is depicted in figure 1.3.

Figure 1.3: Schematic of SASE FEL insertion device. Long undulators are used
such that light produced by the mild sinusoidal motion of electrons at the start
of the beam segment modulate the spatial density of electrons further along.
The resultant electron bunching causes electrons to amplify the radiation coher-
ently. Adapted from [13].

X-ray pulses produced at XFELs are typically on the order of 10s of fem-

toseconds in duration. Energy resolution is typically < 103 ( E
∆E ) [17]. Pulses

can be further monochromated, but this typically lengthens the pulse. Tuning
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of XFEL radiation energy is possible, but at present the process is more time

consuming than energy tuning at third generation sources. Pulse frequency is

limited by electron gun properties, but is currently being pushed upwards of

104 pulses/second on average [17].

In addition to average brilliance, peak brilliance is used as a metric to de-

scribe XFELs. Typical peak brilliance values seen at XFELs which have been

built or are being built reach upwards of 1033 photons
second∗mrad2∗mm2∗0.1%BW . This tremen-

dous increase in brilliance, along with drastically reduced pulse duration, will

enable entirely new and exciting experiments.

1.2.2 X-ray detectors

There are numerous ways to detect and quantify an x-ray signal. This section

aims to provide a brief overview of the dominant architectures with two di-

mensional spatial resolution. Specifically, point and strip detectors (zero di-

mensional and one dimensional detectors, respectively) will not be discussed,

though they do find use in modern x-ray science. Area detectors all require

some sensing medium, which absorbs incident radiation to be measured, and

some means of quantifying the absorbed signal.

One distinction amongst x-ray detectors can be made with regard to the

means by which they convert radiation to a measurable signal: direct and in-

direct. Indirect conversion x-ray detectors use a sensing medium to convert x-

rays to an intermediate signal prior to conversion to the signal that is ultimately

measured. A prime example of indirect conversion detectors is the phosphor-

coupled charge coupled device.
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Charge coupled devices, more commonly referred to as CCDs, find wide

use in optical imaging both in consumer and scientific markets. CCDs consist

of silicon doped in particular patterns such that light can be absorbed in the

camera’s pixels, and generated photo-charge is held in electric potential wells

in the pixels in which the radiation was absorbed. At the end of an imaging

period, a sequence of voltage changes can shuffle a column’s charge to the edge

of the sensor pixel-by-pixel to a readout amplifier which converts the integrated

charge to a voltage. While direct detection CCDs designed for infrared light and

x-rays have been constructed with thicknesses of hundreds of microns [18], the

pixel volume in which light can be absorbed and measured efficiently in most

CCDs is only a few microns [19]. The penetration depth of x-rays in silicon is

much longer than that of visible light, so CCDs designed for use with visible

light will only detect a small fraction of incident x-ray radiation. Most incident

x-rays will pass through the sensitive volume without depositing a measurable

signal. The absorption of photons in a semiconductor will be discussed further

in Chapter 2. To increase the fraction of x-rays which can be detected by a CCD,

the surface of the CCD can be coated with a scintillator or phosphor. Alterna-

tively, the scintillator can be placed on a fiber optic bundle that couples the light

to the CCD pixel array.

The phosphor absorbs x-rays and subsequently emits visible photons. These

photons can then be imaged by the optical CCD with much greater efficiency.

While CCDs can be manufactured with very low noise specifications, the phos-

phor intermediary introduces a number of undesirable effects in the data ob-

tained. For example, the light emitted by the phosphor is emitted isotropically,

so half of the signal is directed away from the imager. Additionally, the conver-

sion efficiency of the phosphor is less than one, and thus the signal to noise ratio
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of the data will be reduced relative to an efficient direct detection implementa-

tion [19]. Furthermore, the location at which the radiation struck the phosphor

is more poorly defined, generally by a factor related to the thickness of the phos-

phor, as the emitted visible light undergoes a random walk through the phos-

phor prior to being detected by the CCD. These problems can be addressed to

some extent, but are common to all indirect sensing detectors. Some other cam-

era archetypes fall into the indirect detection category as well, including most

monolithic active pixel sensors, which employ a scintillating layer in x-ray ap-

plications for the same reason as CCDs [20].

As noted above however, direct detection CCDs are used in x-ray science,

and their development is ongoing [18, 21]. Film is also a direct detection tech-

nology, though it’s use has decreased as alternate means of quantifying x-ray

signals have matured. The detector architecture focused on in this dissertation

is the hybrid pixel array detector (PAD), also a direct detection technology. Hy-

brid PADs employ a dedicated sensing layer which electrically couples directly

to pixels. Chapter 2 contains a detailed discussion of the technology.

There is no universally optimal detector. The particular requirements of an

experiment will dictate which detectors are suitable. The following section

briefly outlines some common measures which can be used to evaluate and

compare detector performance.

Detector metrics

Various metrics exist for the comparison of x-ray detectors. Here we introduce

several parameters which will be relevant in later sections. A broad measure of
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a detector’s limitations is the detective quantum efficiency (DQE) defined as

DQE =
(S o/No)2

(S i/Oi)2 . (1.12)

S and N in Equation 1.12 refer to signal and noise respectively while the

subscript o refers to the output and i refers to the input. This is a measure of

the detector’s impact on the signal-to-noise ratio [22]. For example, if the sig-

nal being measured is x-rays subject to Poisson statistics, the input noise is the

square root of the number of incident x-rays. A DQE of 1 implies that the de-

tector perfectly measures the input signal without introducing any additional

noise or uncertainties. A real detector’s DQE is always less than one. DQE can

vary between individual measurements based on many parameters such as the

magnitude of the input, the spatial distribution of the input, the energy of pho-

tons which constitute the input, and more, but DQE can be used to compare the

performance of different detectors measuring the same signal. Factors which

affect a detector’s DQE can be examined independently.

As alluded to earlier, stopping power is the fraction of incident x-rays which

deposit their energy in the detector’s sensitive region. This is the metric which

indirect detection methods improve with phosphor coatings. Direct detection

methods also have a stopping power less than unity. Some fraction of incident

x-rays will not be absorbed, even by an ideal sensor. Transmission at normal

incidence of x-rays through a material of thickness d drops exponentially with

thickness as

T = e−nµad (1.13)

where n is the number of atoms per unit volume in the material and µa is the

atomic photoabsorption cross section [23]. As such, the absorption of x-rays in

the material is one minus this quantity. Other factors such as absorption of sig-
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nal x-rays in material coatings or other non-sensitive regions of a detector will

further decrease the fraction of signal detected. Figure 1.4 plots the percent of

incident x-rays absorbed by 500µm thick silicon, a common x-ray sensor mate-

rial, as a function of x-ray energy.

Figure 1.4: Percent of x-rays absorbed in 500µm silicon at normal incidence.
Attenuation length data from [23].

Given that some x-rays are absorbed in an area detector’s sensitive volume,

its spatial resolution can be quantified in several ways. A common measure is

the point spread function (PSF) [22]. Given a point input, the PSF describes an

imager’s output. Mathematically, for an input Iin the imager’s output, Iout, is the

convolution of the input with the PSF:

Iout = Iin ∗ PSF =

∫
area

I(ξ, η)PSF(x − ξ, y − η)dξdη (1.14)

A related measure is the line spread function, an imager’s response to a line

of illumination, which is mathematically equivalent to a one dimensional inte-

gration of the PSF. Furthermore, the line spread function is related to the edge

16



spread function, an imager’s response to a step function input. The line spread

function is the derivative of the edge spread function [24].

The maximum signal that an imager can measure without saturation is the

full well, usually specified on a per-pixel basis. The dynamic range of an imager

describes the range of signal magnitudes which can be accurately measured.

What this means exactly can vary between imagers and applications. Often dy-

namic range is reported as a pixel’s full well divided by the read noise. For the

purposes of this work, we will consider two definitions. One is the single pulse

dynamic range. This is the range of signals measurable when the input arrives

within a time frame that is much faster than the detector’s response time. The

second is the continuous signal dynamic range. This is the range of continuous

signals which can be measured, generally expressed in units of x-rays per pixel

per second. Each parameter is relevant in different scenarios.

To understand this metric, we must ask what it means for a signal to be mea-

surable. In this work, the smallest signal of interest will be the signal from a

single x-ray. To resolve this signal with very few false positive or false negative

detections, one might require, for example, a signal to noise ratio of at least 5.

This indicates that, in the absence of actual signal, a one x-ray signal will be seen

due to noise less than once per one million measurements in a given pixel, as-

suming that pixel noise is Gaussian. Regarding the upper end of dynamic range,

x-ray signals are subject to shot noise, owing to the discreet nature of photons.

This means that measurements of photons are subject to Poisson statistics and

the inherent uncertainty in the determination of the average number of photons

which should arrive in a given time window is the square root of the number

17



of photons measured1. When measuring a large signal, this uncertainty is un-

avoidable. Noise is also added to the measurement by the detector. Because

these two noise sources are independent and uncorrelated they add in quadra-

ture [25]. In this work we aim to keep the uncertainty in a measurement due to

the detector smaller than the uncertainty due to Poisson statistics. Of course the

fractional uncertainty of a signal goes to zero as the mean signal goes to infinity.

Formally speaking, the upper end of dynamic range can be specified by when

uncertainty in a measurement is dominated by detector systematics. Practically

speaking, useful measurements can be made with uncertainties of a few tenths

of a percent for large signals.

1.3 Summary and document organization

X-rays are a powerful probe of materials that can provide information about the

organization and spacing of atoms in a sample. Obtaining this information re-

quires a suitable x-ray source and x-ray detector. Synchrotron radiation facilities

are a high brilliance source of x-rays. As synchrotron technology matures, the

list of its useful scientific applications continues to grow, but hurdles still exist

which prevent the full realization of these promising new techniques. Perhaps

most prominent among these challenges is the detector problem. In essence, x-

ray light source technology is out pacing x-ray detector technology. While x-ray

free electron lasers enable a wide range of experiments in theory, their full real-

1To understand this, imagine trying to measure the rate of cars passing a particular exit on
a busy highway. You can count cars for one minute and you will measure an integer number
of cars because cars are discreet objects. If you were to repeat this measurement, you would
probably count a slightly different number of cars, just by chance. Some variation between
measurements is expected. Measuring the number of x-rays that arrive at a detector within
some time window, the integration time, yields variations described by Poisson statistics.
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ization is hindered by a lack of suitable x-ray detectors [26, 27]. X-rays can be

diffracted, but the experimenter has poor means of adequately quantifying the

scattered x-rays.

The development of a high dynamic range pixel array detector, discussed

herein, aims to bridge the gap between synchrotron capabilities and x-ray detec-

tor capabilities. Chapter 2 discusses the technology of integrating hybrid pixel

array detectors and the complementary metal oxide semiconductor (CMOS)

technology that underlies their unique functionality. Chapter 3 discusses a par-

ticular application of integrating hybrid pixel array detector technology to illus-

trate the importance of high dynamic range. Chapter 4 discusses the conceptual

framework for the high dynamic range detector built in this work. Chapter 5

details the first pixel substructures built for this detector and their characteriza-

tion. Finally, chapters 6 and 7 discuss the 16x16 pixel x-ray detector constructed

with these pixels and discusses its performance.
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CHAPTER 2

HYBRID PIXEL ARRAY DETECTORS

2.1 Introduction

Several varieties of x-ray detectors are in operation around the world. Of these

detectors, hybrid pixel array detectors (PADs) are arguably best suited to meet

the dynamic range requirements of modern synchrotron and x-ray FEL light

sources. This chapter contains an outline of PADs and an examination of the

technology and semiconductor physics which underlie their functionality. The

two primary archetypes of PADs, integrating and counting, will be discussed

and compared. Finally, two integrating pixel array detectors with state-of-the-

art dynamic range will be discussed, as the strategies they employ will be uti-

lized in this work.

2.1.1 PAD overview

A hybrid pixel array detector (PAD) module consists of three primary compo-

nents as depicted in Figure 2.1: the diode detection layer, the CMOS electronics

layer, and bump bond connections between the two. Additional off-chip elec-

tronics are wire bonded to the CMOS electronics layer to send data to and from

pixels, supply power, manage bias voltages and currents, and interface with the

chip in any other ways needed.

The diode detection layer, or simply the sensor, converts incident signal x-

rays into an electronic charge which is measurable by pixel-circuits contained in
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Figure 2.1: A cartoon schematic of a hybrid pixel array detector. The CMOS
electronics layer is a lattice of pixel-circuits which measure signals coming from
the diode detection layer. The diode detection layer converts incident radiation
into an electronic signal. The bump bonds connect the diode detection layer and
CMOS electronics layer on a per-pixel basis, transferring electronic signals from
the region of the detection layer in which radiation was absorbed to the nearest
pixels. The image is adapted from [28] and is not to scale.

the CMOS electronics layer. The CMOS electronics layer, an application specific

integrated circuit (ASIC), is the heart of the detector. The ASIC is segmented

into pixels, and each pixel contains dedicated signal processing circuitry. Bump

bonds connect the two layers pixel-by-pixel such that charge generated in the

sensor flows into pixels in the ASIC. Charge carriers generated in the sensor will

typically enter the pixels nearest the sensor region in which they were gener-

ated. As a result, PADs perform spatially resolved imaging. The ASIC contains

additional, non-pixel circuitry to communicate with off-ship electronics.

To understand how these pieces function, some understanding of semicon-

ductor and CMOS device physics is necessary. The following section aims to

provide that foundation.
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2.2 Semiconductor physics

The simplified discussion given here will be limited to monatomic crystalline

semiconductors, as their function is most relevant to this work. By this means

we will attempt to gain a qualitative understanding of the origins of some rel-

evant semiconductor properties. More in-depth reviews of semiconductors,

semiconductor physics, and CMOS device physics, can be found in many ex-

cellent textbooks [7, 29, 30].

2.2.1 Energy bands

Broadly speaking, materials can be categorized by their resistivity as insulators,

metals, or semiconductors. Other categories such as semi-metals can be defined,

but for the sake of simplicity we will limit discussion to the first three categories

mentioned. The resistivity of metals varies, but can be as low as 10−10 Ω-cm.

A strong insulator can have a resistivity as high as 1022 Ω-cm [7]. Throughout

the middle of this enormous range are materials called semiconductors. The

resistivity of semiconductors is generally temperature dependent. For example,

a semiconductor may insulate at low temperatures, but conduct reasonably well

at high temperatures. In contrast, many insulators will melt or sublime before

attaining an appreciable conductivity [31].

To understand the massive variation in resistivity seen throughout nature,

we must understand energy bands in crystalline materials. The possible ener-

gies of an electron bound to a lone atom are discreet. These are the so called

energy levels of a given element. Two atoms of the same element which are
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far apart will each create an identical set of allowed electron states. If we bring

the two atoms close together, the degeneracy of their energy levels is broken

by splitting into two different but closely spaced energy levels [32]. A crystal

is composed of many atoms brought together in a lattice, and the result is the

splitting of energy levels into many separate states which, in the case of an in-

finite crystal, form a continuum called a band. The allowed electron states in a

crystal are therefore described by energy bands.

Alternatively, we can view electrons in a crystal as mostly free, but perturbed

by a periodic potential produced by the lattice of atomic nuclei. A free electron’s

momentum is described by a wave vector. In a periodic potential particular

wave vectors yield multiple solutions to the Schrodinger equation. Specifically,

two standing wave solutions with different energies exist for wave vectors com-

posed of a linear combination of reciprocal lattice vectors. In one solution that

standing wave is peaks between peaks in the potential, the lower energy solu-

tion, while the other features peaks which coincide with potential peaks, corre-

sponding to a higher energy state. These states are related to Bragg reflections

as discussed in Chapter 1, however the wave in this case is the electron’s po-

sition probability density function. The result is a gap between continuums of

allowed electron wave vectors in the presence of a periodic potential [7]. The

gaps between bands are known as band gaps.

To be slightly more concrete, figure 2.2 depicts the dispersion relation (en-

ergy as a function of wave vector ~k) for an electron in a one dimensional weak

sinusoidal potential with periodicity a. The dispersion relation for a completely

free electron (i.e. potential = 0 everywhere in space) is a parabola. Figure 2.2

differs from the free electron most notably at integer multiples of π
a . At these
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points two standing wave solutions to the Schrodinger equation exist. Part (b)

of the figure depicts the dispersion relation plotted in the reduced zone scheme.

The electron’s wave vector corresponds to its momentum, and so positive and

negative wave vectors describe electrons moving in opposite directions.

Figure 2.2: (a) Allowed energies of an electron in a one dimensional sinusoidal
potential with periodicity a. When the wave vector is equal to an integer multi-
ple of reciprocal lattice vectors, two solutions to the Schrodinger equation exist
corresponding to standing waves with peaks on or between the potential peaks.
(b) The allowed energies wrapped back and depicted as bands in the ”reduced
zone scheme.“ Image adapted from [33].

In the ground state, a band corresponding to energy levels in the valence

shell of crystal atoms is the highest energy band with occupied states. If the

band is fully occupied, applying an electric field leads to no net movement of

charge, because there are an equal number of electrons with a given momen-

tum in one direction as there are in the opposite direction. However, if the band

is only partially occupied, electrons can shift in energy to occupy states with

momentum in a preferred direction, and a net current can flow with the appli-
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cation of an electric field. Metals have a valence band which is partially full and

thus conduct electricity. Insulators have a valence band which is completely

full, and thus they conduct poorly. However, allowed electron states exist in

bands with higher energy than the valence band. With sufficient energy an elec-

tron can move to an unoccupied band. If electrons from a fully occupied band

are excited into a higher energy band, the material becomes conductive. The

band above the valence band is called the conduction band. The band gap in

insulators is typically large relative to thermal energy. The band gap in semicon-

ductors is often comparable to the thermal energy (on the order of 1 eV). Higher

temperatures lead to greater occupancy of the conduction band in semiconduc-

tors. This explains why semiconductors conduct more at higher temperatures,

while insulators may melt before they gain an appreciable conductivity.

2.2.2 Doping semiconductors

From the band model we see that a material with a partially filled band con-

ducts electricity, while materials with only full and empty bands are insulators.

Materials with nearly full or nearly empty bands are weak conductors. With a

suitably small band gap, increasing temperature can alter band populations and

increase the conductivity of a semiconductor. An alternative means of increas-

ing the conductivity of a semiconductor is doping.

For a qualitative understanding of doping, consider a silicon crystal. Silicon

has four valence electrons and forms a diamond lattice, the silicon atoms each

bond covalently with their four nearest neighbors. Suppose that we replace one

silicon atom with one boron atom. Boron has three valence electrons, so it will
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be able to fulfill three of the four bonds that are ordinarily made by atoms in the

diamond lattice.

Because the boron atom lacks an electron relative to the silicon atom it re-

places, one electron has been removed from the valence band of the crystal. An

electron could be paired with the neighboring, unpaired silicon electron, but in

a charge neutral material no electron is present for pairing. One could imagine

an electron from a nearby atom jumping over to fill this vacancy. The jumping

electron would of course leave behind its own vacancy, which could be filled by

another jumping electron, and so on. By replacing a silicon atom with a boron

atom we’ve added a hole to the valence band of the silicon crystal, and the hole

can now facilitate the net movement of charge.

Conversely, we might replace one silicon atom with one atom of phospho-

rus, which has five valence electrons. All four silicon bonds can be satisfied

in the diamond lattice, but the fifth valence electron of the phosphorus atom is

unpaired. The electron must still occupy a state defined by the band structure

of the crystal, and so the electron occupies a state in the conduction band. The

electron is free to move with an externally applied electric field, i.e. conduct

electricity. Figure 2.3 provides a cartoon depiction of the electron pairing in a

fictitious, two dimensional silicon square lattice with and without doping.

Note that the conducting charges in each doping case are opposite polarity.

When electron acceptors such as boron are added, the charge moving through

the crystal is positive. When electron donors are added, such as phosphorus, the

mobile charge is negative. Doped silicon is classified as n or p type, depending

on whether the dopant is an electron donor or acceptor, respectively. This pro-

cess is of course more complicated than presented above. For example, dopants
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Figure 2.3: Cartoon depiction of electron pairing in a silicon crystal. Note that
the diamond structure of the lattice is not represented here. Only valence elec-
trons are drawn. (a) Silicon atom in perfect lattice. Four valence electrons make
covalent bonds with all nearest neighboring atoms. (b) One boron atom replaces
a silicon atom. A hole is present because the boron has only three valence elec-
trons and cannot bond with all four nearest neighbors. (c) One phosphorus atom
replaces a silicon atom. Four of the five phosphorus valence electrons engage in
covalent bonding. The fifth valence electron occupies a state in the conduction
band.

are generally chosen such that donor electrons will have bound energies close

to the conduction band so that thermal excitation will disassociate them from

the dopant, but that is not always the case.

Conductivity is dependent on the density of free charge carriers, amongst

other things. Therefore the important conclusion from the cartoon depiction

above is that doping allows engineers to alter the resistivity of a semiconductor.

For example, the resistivity of silicon can be changed by seven orders of mag-

nitude by replacing just one in every one million silicon atoms with a dopant

[31]. Doped semiconductors also bring about other interesting properties. Mov-

ing forward, as is standard, silicon doped with acceptors will be referred to as

p-type silicon while silicon doped with donors will be referred to as n-type.
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2.2.3 P-n junctions

Consider two adjacent regions of a doped semiconductor, one doped with

donors and the other with acceptors. Charge carriers from each region will dif-

fuse into the other and electrons from donor dopants will fill the vacancies from

acceptor dopants. Now the regions on either side of the boundary will possess

a net electric charge. Donor dopant atoms which have lost their 5th valance

electron now have a net positive charge and acceptor dopant atoms which have

accepted a fourth valence electron now have a net negative charge. As a re-

sult, an electric field is established across the junction. This field counteracts

free charge carrier diffusion, sweeping charge carriers away from the junction

and establishing an equilibrium condition. The region that is devoid of mobile

charge carriers is called the depletion region.

This p-n junction is a diode. Consider the effects of applying a bias volt-

age across the device. If the n-doped side of the junction is brought to a higher

voltage than the p-doped region, the applied bias serves to widen the deple-

tion region by pulling electrons in the n-doped region away from the junction

and pushing holes in the p-doped region away from the junction. The depleted

region will grow until the charge of atoms in the region form an electric field

strong enough to reach an equilibrium with the externally applied bias. After a

brief flow of current out of the diode, no more current flows due to the externally

applied voltage. The junction is reverse biased. If we increase the applied bias

high enough, electrons receive enough energy from the electric field to jump

from the valence band to the conduction band. This is Zener breakdown [29].

Additionally, avalanche breakdown can occur when applied electric fields are

strong enough that accelerated charge carriers create electron-hole pairs when
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they collide with atoms in the lattice. However, our discussions will not concern

these regions of operation.

If enough of the opposite bias is applied, such that the p-doped region is

brought to a higher voltage than the n-doped region, each side’s respective

charge carriers will be pushed towards the junction. Opposite charge carri-

ers from either side will combine and nullify. Here we see that current flows

relatively freely. In this case the diode is forward biased.

2.2.4 Radiation in a reverse biased diode

Now return to the case of reverse biasing. Suppose we supply a large enough

voltage to deplete the bulk of the semiconductor. In a fully depleted diode the

current drawn will be primarily due to thermally excited electron hole pairs

generated in the depletion region and swept out by the diode’s internal electric

field. This is the so-called “dark current.” The magnitude of dark current falls

off exponentially with temperature as [34]

I ∝ T 2exp
(
−

Eg

2kBT

)
(2.1)

where I is the dark current, T is temperature, Eg is the semiconductor’s band

gap energy, and kB is the Boltzmann constant. Impurities in the semiconductor

material exacerbate the dark current, as the impurities can provide energy levels

accessible to valence band charge carriers that are intermediate to the valence

band and the conduction band. These “stepping stones” allow smaller thermal

excitations to eventually bring electrons to the conduction band.

If a high energy photon is absorbed in a reverse biased diode, the energy
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deposited creates a cloud of electron-hole pairs. In silicon, roughly 3.6eV is re-

quired to create an electron-hole pair. When a single x-ray with an energy of 8

keV is absorbed in a silicon diode, more than two thousand electron hole pairs

are created. The exact number of pairs will vary slightly between absorption

events, but note that the distribution of the number of electron-hole pairs cre-

ated is not Poissonian because the creation of each electron-hole pair is not an

independent random event. Rather, the events are correlated and because of the

finite number of channels for the x-ray energy to enter, the standard deviation

of the number of electron-hole pairs created is only a fraction of the square root

of the mean. This fraction is called the Fano factor and equals 0.1 in silicon.

The electron-hole pairs generated form a small cloud [29]. The electric field

inside the diode will separate the electrons from the holes and pull them to

separate terminals. Figure 2.4 is a cartoon depiction of a reverse biased diode

which forms the sensor of a pixel array detector. As the clouds drift through

the diode, the cloud expands due to diffusion. More will be said about this in

Chapter 4. Some electrons and holes will recombine before separation by the

electric field. The rate at which this occurs is the carrier lifetime. In silicon,

this lifetime is surprisingly long as a result of silicon being an indirect band gap

material, but is often facilitated by impurities and lattice defects. More can be

found on the topic in, for example, [35].

Ultimately, a reverse biased diode can serve as a sensor for radiation: pho-

tons are absorbed and an electric current flows out of the diode in proportion

to the energy of the absorbed radiation. While the specifications of x-ray PAD

sensors vary, along with the material used, the detectors in this work utilize 500

microns thick Si photodiode sensors.

30



Figure 2.4: Cartoon depiction of radiation being absorbed in a reverse biased
diode. The image is not to scale. The clouds of charge carriers formed are offset
in this image for clarity. The aluminum contact on the sensor is labeled. Image
adapted form [36].

2.2.5 CMOS

Photodiodes provide a means of converting x-rays into current, but a means of

measuring this current is still required. The CMOS electronics in the readout

ASIC perform this function in hybrid pixel array detectors. In this section we

will briefly discuss transistors, which are the primary building block of CMOS

circuits.

CMOS stands for complementary metal oxide semiconductor. CMOS de-

vices are based on the doping described in previous sections. CMOS circuits

are usually fabricated on silicon wafers and allow many transistors to be fab-

ricated on the same wafer. In addition to semiconductor doping, deposition of

metals and silicon oxide (an insulator) are used to build transistors. The tran-

sistors discussed in this section are field effect transistors (FET). Figure 2.5 is a

cross-sectional view of an n-type metal-oxide-semiconductor field effect tran-
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sistor (MOSFET). The transistor is fabricated on a p-type substrate. The device

has four terminals (the substrate itself is the fourth terminal, but an explicit sub-

strate connection is not shown here). P-type MOSFETs can be constructed on the

same wafer as n-type MOSFETs, but they must be fabricated in a region which

is heavily n-doped to form a local n-type well, effectively setting the device in

an n-type substrate, and must be biased appropriately. N-type MOSFETs on p-

type wafers will be discussed below, but the results apply to both types with

appropriate changes in voltage sign and charge carrier species.

Figure 2.5: N-type MOSFET transistor cross-section. The four transistor termi-
nals are the source, drain, gate, and substrate. Width and length (W and L re-
spectively) describe the dimensions of the conductive channel formed beneath
the gate when inverted. Image adapted from [37] with alterations.

Note that the transistor in figure 2.5 is physically symmetric about the gate.

For this reason, which terminal serves as the source and which terminal serves

as the drain depends on bias conditions. The source and drain terminals are

each heavily n-doped regions. Usually the substrate is tied to the lowest sys-

tem voltage. For our purposes, we will assume that the chip has only a positive

supply, and so the substrate is tied to ground. It can be seen based on the anal-

ysis of n-p junctions above that the source to substrate and drain to substrate
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are diode junctions which will never be forward biased if the substrate remains

at ground. The gate terminal is usually composed of metal or a highly doped

polycrystalline silicon [38] and is separated from the substrate by a thin insulat-

ing layer. If the gate is held at ground and a bias is applied between the source

and drain terminals, the n-p-n segment beneath the gate cannot conduct elec-

tricity in either direction because one of the n-p junctions will always be reverse

biased.

A capacitance is formed between the gate and substrate which is propor-

tional to the product of the length and width of the transistor gate as depicted

in figure 2.5. By applying a positive voltage to the gate of the transistor, holes

(the majority charge carrier in the substrate) are repelled. A depletion region

forms beneath the gate and the electric potential of the substrate at the silicon-

silicon oxide interface rises [30]. If the gate bias is increased further, the energy

level of the conduction band at the silicon oxide interface approaches the Fermi

level of electrons in the substrate [37]. Eventually the conduction band at this

interface is populated by electrons and current can flow between the source and

drain. When the electron density in this channel is equal to the native hole den-

sity of the doped substrate the transistor is said to be inverted: electrons are

now the dominant charge carrier at the interface. Note that the ”turning on“ of

a transistor is a gradual process. For the sake of disambiguation, an ”on“ volt-

age is defined, generally as the gate voltage sufficient to invert the channel, and

is referred to as the transistor threshold voltage (Vth).

More formally, for an n-type MOSFET the electric potential of the channel,

ψs, when mobile electron concentration equals the dopant concentration must
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be

ψs = 2ΦF (2.2)

relative to ground defined by the substrate very far from the channel, where

ΦF is the potential of the bulk in depletion due to positively charged acceptor

atoms which is equivalent to the Fermi level of the unbiased substrate minus

the Fermi level of the depleted substrate. From Boltzmann statistics we have

ΦF =
kBT

e
ln

Na

ni
(2.3)

where kB is the Boltzmann constant, T is temperature, e is the electron charge,

Na is the density of doped acceptor atoms, and ni is the intrinsic density of

charge carriers in the unbiased semiconductor [37]. The gate voltage required

to achieve inversion is the threshold voltage:

Vth = ΦMS + 2ΦF +
Qdep

Cox
, (2.4)

where ΦMS is the difference in work function between the gate material and the

substrate, Cox is the gate oxide capacitance per unit area, and Qdep is the charge

in the depletion region,

Qdep =
√

4εsieNa|ΦF | (2.5)

where εsi is the dielectric constant of the substrate (silicon) [30].

We can analyze the current flow between the source and drain when the

channel is inverted. Note that the source is the source of charge carriers conduct-

ing through the device. In the case of an n-type transistor the charge carriers are

electrons. For gate voltages beyond Vth, charge in the channel will mirror charge

across the oxide capacitance on the gate. Assuming that the source voltage is

held at ground and Vgs ≥ Vth where Vgs is the voltage difference between the

gate and the source, following the derivation in [30], the charge in the channel
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per unit length is

Qd = WCox(Vgs − Vth), (2.6)

where W is the width of the transistor channel. If the voltage between the drain

and source, Vds, is greater than zero, the potential throughout the channel will

not be uniform, and the charge density will not be either. The charge per unit

length in the channel a distance x from the source will be

Qd(x) = WCox[Vgs − V(x) − Vth], (2.7)

where V(x) is the potential in the channel as a function of x. In semiconductors,

the mean carrier velocity is v = µE where µ is the charge mobility and E is the

electric field [30], so the current in the channel is

Ids(x) = WCox[Vgs − V(x) − Vth]µn
dV(x)

dx
, (2.8)

noting that µn is the electron mobility in silicon and E = − dV
dx . The minus sign in

the equation for current is lost because the charge carriers have negative charge,

therefore positive current flows in the direction opposite their velocity. Now

separating variables and integrating we have∫ x=L

x=0
Id(x)dx =

∫ V=Vds

V=0
WµnCox[Vgs − V(x) − Vth]dV (2.9)

which, assuming the biases meet saturation criteria, yields current through the

channel:

Id = µnCox
W
L

[(
Vgs − Vth

)
Vds −

1
2

V2
ds

]
. (2.10)

For a given Vgs the current as a function of Vds is a convex parabola. The maxi-

mum current occurs when Vds = Vgs − Vth and is

Id,max =
1
2
µnCox

W
L

(
Vgs − Vth

)2
. (2.11)

Vgs − Vth is called the overdrive voltage. If Vds ≤ Vgs − Vth the transistor is said to

be operating in the triode region.
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As mentioned above, transistors do conduct when Vgs < Vth and the channel

is not yet completely inverted. A full derivation of sub-threshold operation is

beyond the scope of this work, but excellent treatments of the topic can be found

in textbooks such as [37, 38]. The transistor is a core building block with which

integrated circuits are constructed, including the ASICs of pixel array detectors.

2.2.6 Radiation hardened components

Radiation damage is an inevitable part of x-ray detector operation. Measures

can be taken to minimize the exposure of integrated circuits to radiation, but the

issue must always be addressed. Radiation damage in CMOS typically occurs

in two forms: displacement damage and ionization damage [34].

Displacement damage occurs when silicon atoms are displaced by radiation.

The altering of the silicon lattice leads to altered electrical properties of the ma-

terial. X-rays do not cause direct displacement damage, as the process requires

significant momentum transfer. The damage can be caused by Compton scat-

tering of highly energetic photons, but it is a far less prominent mechanism

of radiation damage in x-ray detectors, so this section will focus on ionization

damage.

Ionization damage is most evident in the ionization of silicon oxide. Ioniza-

tion of oxide is problematic because the carrier mobility of electrons and holes

in oxide are vastly different. As a result, if an electron is liberated in oxide, it

will often leave the material, never to recombine with its hole. Holes will un-

dergo some migration, depending on the applied electric fields, but they are far

more prone to trapping in the oxide. This leaves the oxide with an undesired,
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long-term positive charge, which creates parasitic electric fields. This can have

a range of effects depending on what the oxide in question is used for. Ioniza-

tion in conductive materials is not damaging because both charge carriers can

be neutralized.

In reference to figure 2.5, conduction through the FET is regulated by the

voltage on the gate, labeled G. Conduction is inhibited by the opposite doping

of the source (S)/drain (D) and the channel/bulk. These nodes cannot con-

duct unless properly biased. When a positive voltage is applied to the gate of

an NMOS transistor, electrons form a channel beneath the gate connecting the

drain and source which allows current to flow through the transistor when a

drain-to-source voltage is applied.

Ionization damage in the oxide separating the gate from the bulk leads to

holes trapped near the oxide-bulk interface. The effect of these holes on the

formation of a channel in the FET is the same as a positive voltage being ap-

plied to the gate. In essence, ionization damage in FET oxides reduces the gate

voltage required to operate the FET. In extreme cases, it could cause a transistor

to remain permanently “on.” These trapped holes can be neutralized, for ex-

ample through tunneling of electrons from the bulk into the oxide. Changes in

threshold voltages for FETs due to ionization damage are typically on the order

of 100-200mV [39]. Thinner oxides are less prone to long-term ionization dam-

age because the probability of electrons tunneling through to trapped holes is

greater at shorter distances, and the ability of holes to migrate out of the oxide

is greater for thinner oxides. Ultimately, radiation damage can cause leakage

current issues in NFETs, degrading the ability of switches to full open and pre-

vent, for example, voltages sampled on capacitors from drifting. Quantitative
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analysis of the impact of radiation damage is entirely dependent on the circuit

in question. For instance, it is possible that in some cases radiation damage in

more than one part of a circuit can lead to canceling effects. Ultimately, radiation

damage causes circuits to function in ways they were not intended to.

Depending on the complexity of the diode detection layer structures, radi-

ation damage can have a significant impact there as well. Insulators are used

to prevent leakage current in ring structures around the perimeter of large area

diodes used as sensors. High voltages applied to thin diodes (hundreds of volts

across a diode that is less than a millimeter thick in many cases) must be pre-

vented from conducting on diode edges. Oxide guard ring structures are often

used to segregate regions of varying voltages, and ionization damage can com-

promise this insulation. This leads to increased dark current.

Further, diodes in PADs typically use some oxide patterning to isolate elec-

trodes of adjacent pixels. Ionization of this oxide could lead to long term charge

at the oxide-silicon boundary. As with the NFETs discussed above, this has

the potential to form conductive electron channels linking adjacent pixels’ elec-

trodes. This would obviously have a detrimental effect on the detector’s spatial

resolution, as charge being collected in one pixel could easily leak to an adja-

cent pixel. As a result of this potential for radiation damage, holes are often

collected in PADs [40]. Here, positive charge in the oxide actually reinforces the

insulating properties of the structure, inhibiting the conduction of holes.

A variety of circuit design, fabrication, and layout techniques have been con-

ceived to produce circuits whose performance is less susceptible to degradation

due to radiation damage [39]. As device scaling moves to smaller and smaller

feature sizes, the long-term impact of radiation damage is mitigated because
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charges trapped in oxide can more readily tunnel out. Even so, it is useful to

design circuits whose operation is robust in the face of heavy irradiation.

Designing a radiation hard circuit involves considering what circuit features

are most susceptible to radiation damage. For example, in the design of the

MM-PAD (a detector discussed in some depth below) pixel integrators, it was

noted that bias currents are used to set the functionality of the amplifier. As a

result of radiation damage to the bias network, or to biasing transistors in the

amplifier, gate voltages associated with given bias currents could be altered.

For this reason, it was important to make the function of the amplifier relatively

insensitive to bias current variations within a range that could be expected to

result from radiation damage.

Several steps have been identified in the device fabrication process which

can reduce the susceptibility of a circuit to radiation damage. For example,

hydrogen at the silicon-silicon oxide boundary of FETs serves to increase the

trapping of holes at the interface, which is detrimental to the function of FETs,

as discussed above. Annealing of intermediate circuits in pure nitrogen at spe-

cific temperatures has been found to decrease the amount of hydrogen trapped

at the boundary, and thus reduce the detrimental impact of radiation on CMOS

circuits fabricated in this way. At the layout level, many design structure, which

often come with an increased area cost, have been implemented to produce

more radiation hardened circuits. Incorporation of p-doped silicon guard struc-

ture to reduce thickness of oxides required in some circuit structures is one ex-

ample of these techniques [39].
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2.3 Pixel array detectors

In this section we present a brief overview of pixel array detectors followed by

a discussion of the two dominant pixel architectures with which PAD ASICs are

built: counting and integrating.

As depicted in figure 2.1, hybrid PADs consist of two distinct layers, a ded-

icated sensing layer and a signal processing layer. To provide a sense of scale,

figure 2.6 is a photograph of a hybridized sensor wire bonded to support elec-

tronics. Figure 2.7 is a photograph of the an unhybridized PAD ASIC. The de-

tector depicted in figure 2.6 is the CS-PAD [41]. The detector depicted in figure

2.7 is the MM-PAD. It is a 128x128 pixel array with 150µm pixel pitch and a

500µm thick silicon sensor.

As discussed above, the sensing layer of a PAD is typically a monolithic pho-

todiode which is reverse biased and functions as described above. The sensing

layer is connected to the signal processing layer pixel-by-pixel via bump bonds.

Charge generated via x-ray absorption in the sensor is transferred to the pixi-

lated, signal processing ASIC. The diode is biased to create electric field lines

perpendicular to the p-n junction with the aim of sweeping photo-generated

charge from the point of absorption directly to the pixels corresponding to that

volume. Some patterning on the back side of the sensor is required to facilitate

the bonding of the ASIC and reduce cross-talk between pixels.

The ASIC contains an array of pixel-circuits. Each pixel contains its own sig-

nal processing circuitry which can function in a number of ways. Below we will

discuss two dominant pixel architectures employed in hybrid PADs for measur-

ing x-ray signals.
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Figure 2.6: Photo of the CS-PAD hybridized ASIC wirebonded to support elec-
tronics. The wirebonds send biases and control signals to the ASIC, and also
transmit readout signals from pixels to support electronics for processing and
recording. The silicon sensor layer is about 20mm wide. (photograph by Mark
W. Tate)

2.3.1 Integrating detectors

Integrating detectors accumulate a signal over time and output a value indica-

tive of the integrated quantity. Each pixel-circuit also contains elements which

send signals indicative of the collected charge to circuits outside of the pixel, but

for the time being we will focus on the integrating portion of the pixel, the front

end circuitry. Figure 2.8 depicts a basic integrating pixel front end. The diode in

the schematic represents a connection to the PAD sensor layer. The capacitor Cd

is not an explicit capacitor, but represents parasitic capacitance on the integra-

tion node from sources such as the connection to the sensor. Charge collects on

the inverting terminal of the op-amp, which is connected to the op-amp’s out-
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Figure 2.7: MM-PAD ASIC bump bonds. The ASIC contains a 128x128 array of
solder bumps, one connected to each pixel, which can be bonded to a sensor
with suitable backside metalization. Pixel pitch is 150µm.

put through the feedback capacitor C f . The op-amp produces a voltage which

pulls incident charge onto the feedback capacitor such that the inverting termi-

nal voltage will remain equal to the non-inverting terminal voltage, which is

typically supplied by an external source [42].

For small signals, the integrator resolution will be limited by noise sources

originating in the detector. For large signals, without additional circuitry, the

full well of the integrator in figure 2.8 will be limited by its feedback capaci-
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Figure 2.8: Basic integrating pixel schematic. The diode represents a connection
to the photodiode sensor. The amplifier collects charge incident from the photo-
diode onto C f . Cd is not a real capacitor, but represents the parasitic capacitance
on the front end of the pixel. Vout is the pixel output, typically digitized outside
of the pixel through an analog transmission chain (not shown).

tance and operating voltages. A larger capacitor will allow charge generated by

a larger number of x-rays to be collected, but this impacts the small signal sen-

sitivity of the integrator. Increasing the capacitance reduces the gain of the inte-

grator and increases the equivalent noise charge due to noise sources internal to

the amplifier [43]. Therefore, to maintain single photon sensitivity, a sufficiently

small capacitor must be used. To better understand these limitations, the basic

operation of an integrating pixel is derived below.

Integrator properties

Assume that the amplifier in figure 2.8 is an ideal op-amp with infinite input

impedance and large gain A. The output voltage of the amplifier is

Vout = A(Vre f − Vin). (2.12)
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If positive charge Qin enters the integration node through the photodiode, Vin in-

creases and Vout decreases. As a result, the voltage across the feedback capacitor

increases to

∆V f = Vin − Vout = Vin − A(Vre f − Vin). (2.13)

Assuming for the time being that the parasitic capacitance Cd is small, all charge

must be pulled onto the feedback capacitance because the input impedance of

the amplifier is infinite, so

Q f = C f ∆V f = Qin. (2.14)

The charge to voltage gain of this configuration is then

Vout

Qin
=

A(Vre f − Vin)
C f (Vin − A(Vre f − Vin))

≈
−1
C f

(2.15)

for large A. Therefore the output of the integrator in relation to the input charge

is approximately determined by the feedback capacitance.

Of course, this initial derivation neglects several important details. To un-

derstand the interaction between C f and Cd, we can view C f as a capacitor con-

nected in parallel to Cd with a capacitance enhanced by the dynamic response

of the backside voltage, the so called Miller effect [34]. In this way, the effective

capacitance on the front end due to C f is

Ce f f = C f (A + 1). (2.16)

The input charge is distributed between the two capacitors, C f and Cd. The

fraction of charge deposited on C f , which is the quantity being measured, is

Q f

Qin
=

Ce f f

Ce f f + Cd
, (2.17)

which is approximately one for large gain or small Cd. This emphasizes the im-

portance of a high gain integrating amplifier and illustrates that parasitic capac-

itance on the pixel front end degrades the integrator charge collection efficiency.
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2.3.2 Amplifier noise in feedback

As noted above, the small signal resolution of an integrating pixel array detec-

tor is limited by the noise performance of the charge sensitive pre-amplifier (the

integrator). Output referred noise from the amplifier sees a capacitive voltage

divider formed by the feedback capacitor and the front end parasitic capaci-

tance. As a result, the output referred noise of the integrator shows up on the

input as [44]

Vin = Vout
XCd

XC f + XCd

(2.18)

which simplifies to

Vout = Vin

(
1 +

Cd

C f

)
(2.19)

where Vin is the noise on the input as a result of the output referred noise being

fed back, Vout is the output referred noise, XCd and XC f are the reactance of the

front end parasitic capacitance and the feedback capacitance respectively, and

Cd and C f are those capacitances. The equivalent input noise charge, the amount

of integrated charge that the noise is interpreted as, is then

Qnoise−in = VoutC f = Vin

(
Cd + C f

)
(2.20)

which yields a signal to noise ratio of

Qs

Qnoise−in
=

Qs

Vin

(
Cd + C f

) (2.21)

where Qs is the charge signal you hope to measure, subject to the charge col-

lection efficiency derived in the previous section. Based on the analysis above,

we can design amplifiers with acceptable noise characteristics. Acceptable is of

course a subjective term, so design goals must be set. For example, it is com-

monly desirable in x-ray PADs to achieve good single x-ray sensitivity. It can

then be decided that the average integrated noise power of the amplifier must
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yield a signal to noise ratio of at least 5 for the signal from a single 10keV x-

ray. Given amplifier noise characteristics and expected parasitic capacitances, a

maximum integration capacitance can be chosen. Conversely, a desired full well

might dictate the integration capacitance, and an amplifier with sufficiently low

noise can then be designed.

Calculation of the noise signal from a specific amplifier involves modeling

the noise of each component in the circuit, and propagating its effect through

the rest of the circuit. For example, if a transistor gate forms the input of an

amplifier, the noise generated by that transistor, modeled as an input voltage

noise source, results in the initial input noise power multiplied by the entire

amplifier’s gain. Noise from other transistors within the amplifier may have

less of an impact on the amplifier’s total noise. The bandwidth of the system

also regulates the impact of noise sources. When examining an amplifier for

noise consideration, it is also important to look at the amplifier’s susceptibility

to external noise sources, such as power supply ripple.

2.3.3 Electronic noise

Amplifier noise is a complicated subject and highly dependent on the specific

amplifier in question. An examination of general noise considerations will be

given here which is applicable to all amplifiers. While the discussion of noise

in feedback above dealt with output referred noise for the purpose of analysis

(that is the combination of all noise sources inherent to the amplifier), the source

of noise in amplifiers is typically internal to the device. Two forms of noise are

present in all circuits, namely Johnson noise and flicker noise, or 1/ f noise [42].
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Johnson noise, also referred to as thermal noise, arises from random, thermal

motion of charge carriers in circuit elements. Take a simple resistor as an exam-

ple. The charge carriers in the resistor undergo random thermal motion, and

at any given moment we can expect to find a different number of electrons on

either end of the resistor. Even if the resistor is not connected to a circuit of any

kind, the free charge carriers in the resistor will be in motion. The time average

of the charge carriers’ velocities is zero, but at any given moment there may be a

non-zero voltage across the resistor due to charge imbalance. This phenomena

is the source of thermal noise in circuits. We find that the noise power spectral

density associated with Johnson noise is [42]

V2
n = 4kBTR (2.22)

where kB is the Boltzmann constant, T is the temperature of the resistor, and R is

its resistance. For field effect transistors, the power spectral density of thermal

noise is [30]

V2
n =

8kBT
3

gm (2.23)

where gm is the transconductance of the transistor. Johnson noise is present in

any circuit element with finite resistance and its power spectrum is white. In

equation 2.22, equation 2.23, and all following equations in this section, power

spectral density is being referenced, and each equations is implicitly in watts per

hertz (W/Hz). The noise is subject to filtering effects of the circuit in question, and

the total noise power manifested is the integral over frequency of the relevant

noise quantity (e.g. equation 2.22 for a purely resistive network) multiplied by

the transfer function of the effective filter.

Flicker noise is also pervasive and arises from trapping of charge carriers in

materials. Often this trapping occurs at material boundaries such as field effect
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transistor (FET) gate oxide boundaries. Material boundaries present dangling

atomic bonds which introduce extra energy states accessible to charge carriers,

creating the potential for temporary trapping of charges [34]. Because conduc-

tion in FETs occurs at the oxide boundary, flicker noise is the dominant form of

noise in FETs. Interestingly, flicker noise is not frequency independent. It gen-

erally exhibits a spectral dependence of the form 1/ f n where n is some number

indicative of the material or sample, but typically of order one. For this reason

flicker noise is often referred to as 1/ f noise. For FETs, flicker noise is often mod-

eled as a voltage source on a FET’s gate with average spectral power density of

[30]

V2
n =

K
CoxWL

∗
1
f

(2.24)

where K is a process dependent constant on the order of 10−25V2F, Cox is the

gate-oxide capacitance per unit area, and WL is the product of the width and

length of the transistor gate in question.

Each of these noise sources can be represented in a circuit in multiple ways.

Often circuits are modeled as noise-free circuits with noise voltage or current

sources added as described by equations such as 2.22 and 2.24, but placement

of these noise sources is important. Noise can be represented as input or output

referred and as a voltage or current source. For example, if an amplifier with

gain A0 has a noise output of V2
n , the circuit model can include a noise source

on the amplifier’s output with power spectral density V2
n or a noise source on

the amplifier’s input with power spectral density V2
n/A

2
0, as discussed above.

Typical noise root mean square (RMS) magnitude in CMOS amplifiers are on

the order of nV/
√

Hz input referred noise voltage.
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2.3.4 Counting detectors

Photon counting PADs are an alternative to integrating PADs that minimize

the impact of many noise sources. Rather than accumulating signal over time,

photon counting detectors perform pixel level discrimination of signals in real

time. Figure 2.9 depicts the core of a photon counting pixel. The diode in the

schematic represents a connection to the PAD sensor layer. The capacitor Cd rep-

resents parasitic capacitance on the integration node. Photon absorption in the

sensor produces a burst of photocurrent that enters the pixel and interacts with

the analog pulse shaping circuitry. The output of the pulse shaper is monitored

by a comparator, and if the peak pulse voltage is greater than the threshold volt-

age, Vth, an in-pixel counter is incremented. The counter is read out to off-chip

electronics at the end of the exposure.

Figure 2.9: Basic counting pixel schematic. The diode represents a connection
to the photodiode sensor. Cd is not a real capacitor, but represents the parasitic
capacitance on the front end of the pixel. The pulse shaper outputs a pulse for
incident photocurrent spikes. The comparator determines whether the pulse
height indicates that an x-ray was absorbed in the sensor. When the comparator
fires, the counter in incremented. The total digital counts in a given period are
readout off chip (read out chain not shown).

The pulse shaper can be constructed in many different ways, but often con-
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sists of an integrating amplifier with a DC feedback element, such as a resis-

tor, to prevent signal from persisting on the integration capacitance [45]. The

threshold Vth can be set such that only x-rays with sufficient energy will trigger

the comparator and thus increment the counter. This has several advantages

and disadvantages which will be discussed in the next section. amplifier noise

on the front end amplifier and power supply or reference voltage fluctuations,

along with the pulse shaper properties, set the minimum photon signal which

can be recorded.

By performing an analog to digital conversion at the pixel level, full well is

no longer limited by a capacitor size, but instead the depth of a digital counter.

This extends the full well drastically.

2.3.5 Comparing integrating pixels and counting pixels

By identifying individual photon events, counting detectors (with proper cali-

bration, which can be difficult) are able to ignore dark current entirely. In con-

trast, integrating detectors accumulate dark current, which must be accounted

for in measurements through a background subtraction. Furthermore, thresh-

old discrimination can eliminate fluorescence photons from imaging if the en-

ergy of the fluorescence is sufficiently lower than the energy of the photons of

interest. Some photon counting detectors, such as the Medipix3 can use mul-

tiple thresholds and multiple in-pixel counters, which enables “color” imaging

[46]. For example, if two distinct photon energies are expected in an image,

photons of each energy can be distinguished. This is only possible in integrat-

ing detectors if very few photons arrive in the integration window, such that
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the signal can be reliably divided into photon components. These photon coun-

ters are able to reject higher harmonic x-rays from storage ring sources, which

is not possible with integrating detectors. The signal from higher harmonics

appear as several fundamental wavelength x-rays arriving at the same pixel in

integrators.

By performing analog to digital conversion in-pixel, photon counting detec-

tors are also less susceptible to noise in the readout chain, as digital values are

more robust in transmission than analog values.

However, photon counting detectors have significant drawbacks relative to

integrating detectors. To begin, setting the detection threshold is not trivial,

and pixel level trimming of threshold values is often necessary. Without perfect

threshold selection, pixel boundaries can become insensitive to x-rays. This is

because an x-ray which is absorbed at a boundary between pixels will deposit

a portion of the generated charge into each nearby pixel. The pulse in each

pixel may then be too small to pass the threshold for photon detection. This

problem is worst at pixel corners in a square pixel array, where charge is shared

between four pixels. Alternatively, a split event may signal detection in more

than one pixel and the x-ray will be double-counted. Some circuits have been

designed to address this problem, for example the Medipix3 counting detector

permits pixels to communicate with nearest neighbors to negotiate split events

and properly assign photon counts to whichever pixel receives the most charge,

provided that the pixels cumulatively received enough charge to cross the de-

tection threshold [47]. These systems have their own complication, including

the necessity of elaborate calibrations.

Perhaps most problematic in many applications of counting detectors rel-
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Figure 2.10: Illustration of pulse pileup in a photon counting detector. The true
and observed pulses line depicts the ”true“ pulses that would result from each
photon event individually on top of the ”observed“ pulses that the pulse shaper
outputs. The detector’s state line illustrates the window in which the compara-
tor will read only one photon, while the events on detector line is the actual
timing of photon events. With five photons incident on the pixel, only three are
counted. Image adapted from [48].

ative to integrating detectors is the count-rate limitation of photon counting

pixels. Photon counting pixels shape incident photocurrent pulses with some

characteristic time constant. If more than one photon arrives within the span

of this time constant, a composite pulse will be produced, and the comparator

may be unable to distinguish the two events from a single photon event. In

essence, multiple photons arriving within a sufficiently small time window are

counted as a single photon. The pulse pileup problem is illustrated in figure

2.10. The figure depicts a counting detector pulse shaper output with five pho-

tons incident. The individual pulses are drawn beneath the composite pulses.

The Detector’s state indicates that only three photons are recorded.

This severely limits the maximum flux which can be utilized in experiments
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with photon counting detectors. Because the arrival of photons is subject to shot

noise, maximum flux must be kept below a level which produces even a small

probability that more than one photon may arrive at any given pixel within the

shaping time constant. This shortcoming is exacerbated by the pulsed nature of

synchrotrons which often have a duty cycle as low as 0.05%. Figure 2.11 plots

measurements of average flux taken at the European Synchrotron Radiation Fa-

cility (ESRF) under different fill conditions. In most cases, measurement linear-

ity rolls off significantly at just 106 counts per second (cps). The degradation

of linearity varies based on synchrotron fill pattern because the limiting factor

for counting detectors is not average flux, but instantaneous flux. More intense

pulses of x-rays are more prone to under counting. This means that counting

detectors are effectively non-viable for use at XFELs, where all x-rays arrive in

less than one picosecond.

Some circuits have been devised to address this limitation of photon count-

ing detectors. For example, some models of the PILATUS photon counting de-

tector utilize a re-triggering technique to gain better measurements of photons

arriving at a pixel experiencing pile-up [36]. If a pulse is long enough to keep the

in-pixel comparator high (presumably due to pileup) the comparator is force-

fully re-triggered after some predefined time, and a second count is registered.

Measurements from [50] demonstrating improved count rates with forced re-

triggering is plotted in figure 2.12.

Alternatively, some photon counting detectors simply multiply signals by

a correction factor when rates which are know to experience pileup are mea-

sured. While these techniques help, they also introduce greater uncertainty into

the measurement. Overall, photon counting detectors offer great advantages
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Figure 2.11: Measured counts per second (cps) of incident x-rays on a PILATUS
photon counting pixel versus the actual flux at the European Synchrotron Radi-
ation Facility (ESRF). Here we see the impact of synchrotron pulse structure on
the count rate limitations of photon counting detectors. Regardless of average
flux, the instantaneous flux measurable by a counting pixel is limited. Observed
count rate varies with synchrotron mode. The plot is adapted from [49].

in noise reduction and extraneous signal rejection. However, count-rate limita-

tions make them best suited to relatively low flux applications.

2.4 Integrating PAD state-of-the-art

As discussed above, the full well of a simple integrating pixel, defined as the

amount of integrated photocurrent that can be stored in such a pixel, is lim-

ited by the size of the front-end amplifier feedback capacitance for a given out-

put voltage swing. Increasing the integration capacitance to increase full well
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Figure 2.12: Measured count rate of incident 10 keV x-rays on a PILATUS3
photon counting pixel versus the actual flux. Severe count rate non-linearity
occurs above 106 counts per second without re-triggering. Implementation of
re-triggering improves estimation of count rate to some extent, but is still inher-
ently limited. The plot is adapted from [50].

is ultimately constrained by pixel size. Perhaps more importantly however, a

larger integration capacitance couples the output noise of the integrating ampli-

fier to its front-end more strongly, leading to a larger equivalent noise charge,

and thereby obscuring small signals. Thus increasing the well depth of an in-

tegrating pixel while maintaining sensitivity to single photon signals requires

architectures more sophisticated than the simple integrator discussed above.
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2.4.1 The Mixed Mode Pixel Array Detector (MM-PAD)

Dynamic range extension of an integrating pixel can be achieved in many ways,

one of which is eliminating integrated charge to prevent integrator saturation.

If this is done in a controlled way, the total integrated charge can be recon-

structed. For example, the readout ASICs described in [51] and [52] each use

charge pumps to systematically eliminate integrated charge, and the number of

charge pumps utilized is recorded as a digital value. The mixed-mode pixel ar-

ray detector (MM-PAD), a detector developed by Sol Gruner’s research group

at Cornell University [53], performs this digitization in each pixel of a two di-

mensional array during integration.

In the MM-PAD, photocurrent resulting from absorption of x-rays in a

reverse-biased photodiode is integrated onto a charge sensitive amplifier whose

output is monitored by a comparator. When the amplifier output (Vout in figure

2.13) crosses an externally set threshold (Vth in figure 2.13), a gated oscillator is

enabled that triggers a counter and the switched capacitor circuit enclosed in the

dotted box in figure 2.13. With each pulse of the gated oscillator this switched

capacitor removes a fixed quantity of charge (∆Q = Crem(V f ront−end−Vlow)) from the

integration node while an in-pixel counter is incremented. The charge removal

incurs no dead time and helps the integrator avoid saturation. The integration

capacitance is sized such that the signal from a single 8 keV x-ray is readily

measurable with an excellent signal to noise ratio. This strategy shifts the full

well limiting parameter from the size of a capacitor to the depth of the in-pixel

digital counter.

Figure 2.14 plots measurements which outline the mixed mode integration

of the MM-PAD. Section (a) of figure 2.14 is the analog portion of integrated
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Figure 2.13: Simplified MM-PAD schematic. The switched capacitor for charge
removal is enclosed in the dotted box. The diode in the schematic represents a
connection to the detector sensor, a reverse-biased diode.

signal. This is scaled and merged with the digital potion in (b) to produce a

measurement of total input (with a constant source) versus exposure time in

(c). By utilizing in-pixel digitization and elimination of signal during integra-

tion, the MM-PAD achieves a full well of 4x107 8 keV x-rays/pixel/frame while

maintaining sensitivity to signals as small as one 8 keV x-ray. The detector also

achieves a frame rate of 1kHz [53]. The pixel array is composed of six mod-

ules butted in a 2x3 array, and each module is composed of 128x128 pixels with

150µm pitch.

Mixing digital and analog modes in the MM-PAD has its own limitations.

Most prominently, in the existing design, digitization and removal of integrated
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Figure 2.14: (a) Analog output signals as a function of exposure time while in-
tegrating a constant source. The output forms a sawtooth wave, dropping each
time a charge removal cycle is executed. (b) Number of charge removal cycles
executed versus exposure time. Data corresponds to the measurements in (a).
(c) Analog output signals merged with digital output yielding total integrated
signal versus exposure time. The red line in each plot is a fit to illustrate linear-
ity. Plots adapted from [54].

charge is limited to a rate of 2MHz. This is the maximum speed at which the

in-pixel gated oscillator was designed to run. Reliable charge integration in the

high flux regime requires that, once the charge removal capacitor is connected

to the integration node, the node returns to virtual ground before it is discon-

nected. Deviation from this behavior leads to uncertainty in ∆Q, the charge

removed per oscillator cycle. The MM-PAD amplifier meets this requirement

within its design specifications, but the question of front-end virtual ground fi-

delity becomes more challenging with larger inputs, particularly for high peak

photocurrent. In the MM-PAD, the charge removed per gated oscillator cycle

is roughly equal to the integrated photocurrent generated by 200 8 keV x-rays
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Figure 2.15: Block level AGIPD schematic taken from [5]. Capacitors C f ,mid and
C f ,low begin with switches open. If the integrator output voltage crosses Vre f the
switch connecting C f ,mid is closed. If Vre f is crossed again, C f ,low is connected.
The storage cell matrix after the CDS stage is an array of in-pixel storage cells
for burst framing.

converted in the silicon x-ray sensor, resulting in a sustained flux capability of

4x108 8 keV x-rays/pixel/s.

2.4.2 The Adaptive Gain Integrating Pixel Detector (AGIPD)

An alternative means of extending dynamic range has been demonstrated by

the Adaptive Gain Integrating Pixel Detector (AGIPD), a detector currently un-

der development for the European XFEL by a collaboration between Deustsches

Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the Univer-

sity of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5].

Figure 2.15 depicts a block level schematic of the AGIPD pixel. Like the MM-

PAD it is an integrating pixel, but extends dynamic range with an adaptive gain

scheme rather than charge removal.

Like the MM-PAD, the integrating amplifier begins framing with a capacitor

small enough to measure the signal of a single x-ray and a comparator monitors
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the amplifier output. When the integrator is approaching saturation, the com-

parator signals the control logic, and a second capacitor, this one significantly

larger, is connected in parallel to the first (C f ,mid in figure 2.15). By increasing the

total feedback capacitance, the gain of the integrator is reduced and saturation is

avoided. As demonstrated in previous sections, sensitivity to single x-rays may

be lost with the additional feedback capacitance, but under these conditions the

integrated signal is already larger than a single x-ray, so the reduced resolution

is tolerable so long as shot noise remains the dominant source of uncertainty. A

third capacitor, larger still, is available in the event that saturation is reached a

second time.

When reading out, the AGPID transmits the integrated signal as an analog

value in addition to a second value which indicates the final gain stage engaged

while framing. In this way the AGIPD achieves a full well of more than 104

x-rays per pixel per frame. There are minimal instantaneous flux limitations on

the pixel. This is important because the pixel is designed for use at the Euro-

pean XFEL, where x-ray pulses with durations on the order of femtoseconds

will have to be measured. The AGIPD provides a means of integrating arbitrar-

ily short x-ray pulses with up to 104 12 keV x-rays/pixel/pulse. In contrast, the

MM-PAD can integrate arbitrarily short x-ray pulses of up to 200 8 keV x-rays

and experiences count rate limitations for larger pulses. The limitation is set

by the rate of charge removal. However, the maximum full-well and thus dy-

namic range of the AGIPD is still constrained by capacitor size, and thus pixel

size. The MM-PAD full well is set by the depth of a digital counter, which scales

exponentially with number of bits and is in general drastically smaller than ca-

pacitors in CMOS. With a significantly deeper full well, the MM-PAD can inte-

grate sustained fluxes of up to 4x108 8 keV x-rays/pixel/s. While the adaptive
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Figure 2.16: Transfer characteristics of the AGIPD detector pixels. The three re-
gions plotted represent the three gain settings of the AGIPD. The gain setting at
readout is dependent on incident signal. The dynamic range spans four orders
of magnitude at 12.4 keV. Plot adapted from [5].

gain scheme implemented in the AGIPD is powerful, increasing dynamic range

much further requires capacitor sizes that may be unreasonable.

Later in this dissertation a pixel architecture will be described which com-

bines the advantages of the AGIPD and the MM-PAD into a single high dynamic

range pixel. First however, we aim to demonstrate the importance of dynamic

range in x-ray detectors for synchrotron science with some concrete examples.
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CHAPTER 3

APPLICATION OF DETECTORS

3.1 Introduction

This chapter discusses an experiment utilizing the MM-PAD, an x-ray detector

developed by the Gruner group. The purpose of this discussion is to illustrate

the importance of high dynamic range detectors in synchrotron science. The

work described here is a diffraction study of uranium dioxide under pulsed

magnetic fields conducted at the Advanced Photon Source (APS) experimental

hutch 6-ID-C. My collaborators included Zahir Islam from the APS, Jacob Ruff

from CHESS, Krzysztof Gofryk and Daniel Antonio from Idaho National Lab,

and Kate Shanks from the Gruner group at Cornell University.

Two benefits of high dynamic range detectors will be examined. Higher

dynamic range allows for finer temporal resolution and the measurement of

small signals which can provide important information that would otherwise

be drowned out by larger signals.

3.2 Uranium dioxide background

Nuclear fission of uranium dioxide provides upwards of 20% of the world’s

power. The thermal conductivity of uranium dioxide governs the conduction of

heat produced by fission which is ultimately converted to electricity, and thus

understanding this property is vital. While the material has been studied exten-

sively since the Manhattan Project, some elastic and magnetic properties remain
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poorly understood. Uranium dioxide exhibits a first order transition to an anti-

ferromagnetic state at 30.8 K [55], and abrupt changes in unit cell volume have

been observed around this temperature [56]. The material has a cubic lattice

(CaF type 2) at room temperature. Unit cell changes at the Néel temperature are

theorized to be the result of Jahn-Teller distortions in the oxygen cage around

the uranium atoms [57]. Application of strong magnetic fields have been found

to amplify these distortions. The coupling of magnetic and elastic properties in

uranium dioxide could have profound implications on the present understand-

ing of this material’s thermophysical properties.

Bulk measurements have shown that above the Néel temperature magnetic

fields applied along the 〈111〉 lattice vector compress the unit cell along this

axis and expansion in transverse directions is observed. However, below the

Néel temperature the reverse is observed: magnetic fields applied in the 〈111〉

direction induce elongation of the unit cell, and constriction occurs perpendic-

ular to the applied field. Recent studies have found that reversing the direc-

tion of the applied magnetic field after cooling the uranium dioxide below the

Néel temperature can also reverse the contraction [58]. This behavior is indica-

tive of piezomagnetism which, in addition to magnetostriction, suggests that

a magnetic moment can be induced by physical strain on the material. Quan-

titatively, piezomagnetism implies a linear coupling between a material’s me-

chanical strain and magnetic polarization. Very few piezomagnetic materials

are known to exist.

In uranium dioxide, switching of the piezomagnetic behavior occurs at ±18

T. In practice, the sign of lattice expansion relative to magnetic field direction is

set by application of magnetic fields >18 T in one direction and is only reversed
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when fields >18 T are applied in the opposite direction. If this behavior is the

result of piezomagnetism, with a coercive field strength of 18 T, uranium dioxide

is the strongest piezomagnet ever observed.

The inter-atomic interactions of uranium dioxide are ripe for exploration.

Bulk measurements yield net crystallographic properties, but single crystal

diffraction is arguably the best way to directly measure unit cell changes. For

example, while a net expansion transverse to the 〈111〉 axis has been measured

in bulk, whether this is due to a uniform shift in unit cells or twinning of crys-

tallographic grains can not be discerned. Below, an experiment to further in-

vestigate these phenomena is discussed. In this experiment, a detector with a

high dynamic range is essential to obtain high resolution data of phenomena

in pulsed magnetic fields and to discern the fine details of the sample’s atomic

distortion.

3.3 Experimental design

The experiments described below were conducted at experimental hutch 6-ID-

C at the Advanced Photon Source (APS). The APS is a third generation syn-

chrotron source with a 1104 m circumference storage ring described in [59].

Experimental hutch 6-ID-C is fed by an undulator through a double Si 〈111〉

monochromator with a 3.2-28 keV energy range. Energy resolution is ∆E/E ≈

10−4. A 3-stripe vertical focusing mirror with 60 cm active area is used to reject

higher harmonic photons and focus the beam to < 1 mm.
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3.3.1 Pulsed magnet

The 6-ID-C hutch contains a novel apparatus for collecting diffraction data from

a sample mounted in a cryogenic solenoid which is connected to a 10 kV, 500 kJ

capacitor bank. Samples can be exposed to pulsed magnetic fields >30 T ev-

ery ∼12 minutes with a peak field time > 1 ms. The custom designed solenoid

enables x-ray scatter from samples to be collected over a roughly 23.6o arc in for-

ward scatter or back scatter geometries while under maximum magnetic field,

as described in [60]. Adjustment of sample position within the magnet allows

a larger arc of diffraction to be collected at lower peak fields, but this was not

explored in the work described here.

To control the peak magnetic field, and to control the duration of the mag-

netic field pulse, a choke coil is place in series between the capacitor bank and

the magnet. Capacitor charging voltage can also be used to limit peak magnetic

field on a per-pulse basis. The greatest limitation to high throughput data acqui-

sition is the cooling rate of the solenoid. Due to finite impedance of the magnet

coils, heat is generated with each pulse. To minimize physical damage to the

solenoid the pulse rate is limited.

Samples are cantilevered on a thermally conductive and electrically insulat-

ing arm, made of single crystal sapphire, into the bore of the magnet. The arm

thermally couples the sample to a closed cycle cryostat which can cool samples

to below 10 K. The sample chamber, including the magnet, is sealed. The mag-

net itself sits in a liquid nitrogen bath which is thermally independent from the

sample cryostat. Motors control the translation of the sample in three mutually

perpendicular directions and rotation on both axes perpendicular to the x-ray

beam. Magnetic fields are applied along the axis of the beam.

65



3.3.2 Uranium measurements

The sample is a 1mm x 1mm x 500µm (height x width x depth from the beam’s

perspective) single crystal block of uranium dioxide with the 〈111〉 face pol-

ished. The sample is mounted with the 〈111〉 surface facing the beam. The mag-

net is positioned so that the 〈888〉 diffraction condition is met in back-scatter.

Beam defining slits set the beam size on the sample to roughly 200µm x 200µm.

The beam flux is 3.5x1012 15.85 keV x-rays/s.

Figures 3.1 through 3.3 illustrate the geometry of the experiment1. Further

discussion of typical diffractometer geometries can be found in many sources.

For an overview of the methods used here, see the equatorial and moving-

crystal-moving-detector methods described in Chapter 2 of Single Crystal

Diffractometry by Arndt [61].

Zero field θ− 2θ maps were taken of the sample at 40 K and 14 K to measure

lattice constants and verify the expected sample contraction based on previous

bulk measurements, roughly ∼ 100 micro-strain. Strain refers to the change in a

dimension relative to the unstrained dimension. In this case, the lattice constant

has changed by 10−4 times its original value, 5.47 , due to a phase transition at

30.8 K. Figure 3.4 is the θ − 2θ map at 18 K. This map is produced by taking

images of the sample at a range of sample θ values (angle of the sample relative

to the beam). Each image is integrated in the polar angular direction χ (per-

pendicular to the plane of θ and 2θ, as shown in figure 3.3) to obtain the total

diffracted intensity at a given sample θ angle across the range of 2θ angles sub-

tended by the detector. Figure 3.5 is a single frame taken of the uranium dioxide

〈888〉 diffraction peak at 14 K.

1Figures 3.1 through 3.3 were drawn by Alexandra Westbrook
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Figure 3.1: The sample is mounted in the magnet and diffraction is collected
by the detector in back-scatter geometry. Note that the sample does not rotate
independently from the magnet.

Mapping the detector pixels to 2θ values was performed with a silicon cal-

ibrant as described in the next section. Compiling the diffracted intensity as a

function of 2θ at each sample θ angle, we obtain a map of the intensity in recip-

rocal space of the sample’s electron density throughout the region of interest.

The angular shift in the 〈888〉 peak observed between 40 K and 14 K indicates

lattice contraction consistent with bulk measurements.

These zero field measurements were taken in a manner intended to mirror

the measurements subsequently taken with an applied magnetic field. A Hall

effect current sensor measures the current flowing through the magnet, which
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Figure 3.2: Sample θ measures the rotation of the sample relative to the incident
beam. 2θ measures the angle of diffraction relative to the transmitted beam.
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Figure 3.3: Detector pixels are mapped horizontally to diffraction angles (2θ).
Detector pixels are summed in the vertical direction (χ) to create the θ− 2θ plots
referred to throughout this chapter. Due to sample orientation, diffraction pri-
marily occurs in the y-x plane.

is recorded by an oscilloscope. The oscilloscope also monitors the framing of

the MM-PAD. In this way, images are mapped to magnetic field values. The

MM-PAD recorded images at a rate of 1kHz with an exposure time of 140 µs.

Note that because the magnetic field is constantly changing, each image is a sum
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Figure 3.4: Uranium dioxide θ−2θ plot measured at zero field and 14 K. The ver-
tical lines in the intensity are artifacts resulting from gaps between the MM-PAD
detector modules. This plot serves as a baseline for comparison of diffraction
from the sample with magnetic fields applied.

of diffraction from all of the magnetic field values visited during the exposure.

In analysis, frames were assigned to the time-averaged magnetic field applied

throughout the exposure.

Figure 3.6 plots one magnet pulse versus time with MM-PAD exposures

highlighted. Because the gaps in time between frames is large relative to the

exposure time, measurements were repeated with an altered delay between the

triggering of the magnetic field pulse and the start of MM-PAD framing, sam-

pling more intermediate magnetic field values.
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Figure 3.5: Sample frame of uranium dioxide diffraction peak 〈888〉 at room
temperature. The color scale is logrithmic and the exposure time was 10 ms. The
peak flux is close to the maximum measurable by the MM-PAD. Gaps between
the modules of the MM-PAD are also visible.

3.3.3 Azimuthal calibration

To interpret the measured data in this experiment, the detector’s position rel-

ative to the beam and sample needed to be measured. The calibration process
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Figure 3.6: Pulsed magnetic field as measured by the Hall current monitor,
based on the known inductance of the solenoid. To illustrate magnetic field
sampling, MM-PAD exposures are highlighted. Each exposure time was 140µs.

employed here relies on high quality single crystal silicon. In this case a silicon

〈111〉 monochromator was used. After aligning the sample θ rotation stage’s

axis of rotation with the x-ray beam, the silicon monochromator was mounted

on the rotation stage. The orientation of the silicon is extremely well known,

and was rotated such that the 〈888〉 diffraction peak was visible by the MM-

PAD with a beam energy of 15.85 keV in back-scatter geometry.

A θ − 2θ map of the single crystal silicon was taken through its full rocking

curve, and the center of mass of the plot was calculated. The lattice parameter

of silicon is well known, and thus the precise angle of diffraction corresponding

to the center of mass of the diffraction spot is well known. This can be mapped

to a particular point on the face of the MM-PAD to better than a pixel, because
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the diffraction spot spans several pixels in the back-scatter geometry.

The energy of the beam was then shifted to 15.99 keV, which also shifts the

angle which satisfies the Bragg condition. A second θ − 2θ map was taken,

and again the center of mass was mapped to a position on the MM-PAD. The

spacing between pixels is well known, as this is set by a lithographic process

with resolution much smaller than the pixel pitch of 150µm. With knowledge of

the diffraction angles and the points at which the diffraction struck the detector

we can obtain very accurate measurements of the distance from the beam to

the detector perpendicular to the beam and the distance from the detector to

the sample along the axis of the beam, as illustrated in figure 3.7 and calculated

below.

The sample to detector distance along the axis of the beam is ds. The distance

between the diffraction spot on the detector and the beam, perpendicular to

the beam, is d1 for the lower energy and d2 for the higher energy. θ1 and θ2

are the complements to the angles of diffraction at lower and higher energy

respectively. The distance on the surface of the detector between centers of Si

〈888〉 diffraction is dp. Note that d2 = d1 + dp.

We know that tan(θ1) = d1
ds

and tan(θ2) = d2
ds

. It follows that

tan(θ1)
tan(θ2)

=
d1

d2
=

d1

d1 + dp
(3.1)

which allows us to solve for d1. Given that the difference dp was the difference

in pixels in only the horizontal direction, this allows us to solve for all of the

desired quantities. Furthermore, this provides knowledge of the azimuthal an-

gular coordinate of each pixel on the face of the MM-PAD given the position

at which the detector is mounted. Note that by ignoring vertical displacement,

we are assuming that the vertical angle of the diffraction is small relative to the
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Figure 3.7: Pixel to 2θ calibration geometry. Diffraction from a silicon
monochromator is measured with two different x-ray energies and fixed detec-
tor position. This allows calculation of the azimuthal angular position of each
pixel on the detector surface.

horizontal diffraction, which in this case is true.

This calibration provided an opportunity to verify that the MM-PAD

sample-to-detector distance would provide sufficient resolution for the ex-

pected measurement. Energies were chosen such that the beam diffracted from

Si would shift by the angle expected due to contraction of the uranium dioxide

under peak magnetic field. At the sample to detector distance used here (∼1.5
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m) the diffraction center of mass sweeps across forty pixels on the MM-PAD.

3.4 Data analysis

The magnet was pulsed at a set of sample θ positions. Each frame was assigned

a magnetic field value according to the oscilloscope measurements discussed

above. Sorting frames by magnetic field and sample orientation yields the set

of θ − 2θ plots in figure 3.8. These plots provide a view of what the uranium

dioxide unit cell is doing throughout the magnetic field pulse. Note that more

than ten magnetic field values were sampled per pulse, and not all measured

magnetic field values are plotted below.

The slight intensity variation in the diagonal direction, along the strips of

integrated intensity, are artifacts resulting from much finer sampling in 2θ than

sample θ. One sample θ value (position of sample rotation stage) can be sam-

pled per pulse while more than two hundred 2θ values (pixels across the detec-

tor) are sampled per pulse. As a result, the axes in figure 3.8 have very different

scales and the intensity in reciprocal space appears to jump in 2θ with each step

of sample θ.

To more readily interpret this behavior, the θ−2θ plots were collapsed to the

sample θ = θ line. Bins were drawn with boundaries perpendicular to a line

with slope 1/2 in the θ − 2θ plots and the sum of integrated intensity in each

bin forms one point in the plot in figure 3.9. Each row of this plot shows the

intensity in reciprocal space of the uranium dioxide sample along the reciprocal

lattice vector 〈hhh〉. The plot’s vertical axis is magnetic field.
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Figure 3.8: A selection of θ − 2θ plots of uranium dioxide as a function of mag-
netic field. Each plot is composed of a separate frame for each sample θ value.
Values of 2θ correspond to pixels on the MM-PAD. This depiction illustrates the
behavior of electron density in reciprocal space as a function of magnetic field.

Figure 3.9 contains two plots of the same data: the top has a linear scale to

illustrate the difference in intensities between what is ultimately two diffraction

spots, while the bottom is a log plot in which the dimmer spot is more clearly

visible. Both plots illustrate that the majority of diffraction shifts to lower q with

higher magnetic field. What was less expected is that the diffracted intensity

splits into two separate spots. The less intense of the two spots shifts to higher

q, and appears to diminish as magnetic field increases.
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Figure 3.9: Integrated intensity along reciprocal lattice vector 〈hhh〉 as a func-
tion of magnetic field. At zero field a single diffraction peak is seen. The peak
shifts as field increases, and a weaker peak diverges from the primary diffrac-
tion above 5 T. The plot is formed by dividing θ − 2θ plots along the line θ = θ

into bins perpendicular to this line, spanning the entire dataset. The top and
bottom images are the same data. The top plot has a linear scale and the bottom
plot has a log scale.

The interpretation of this behavior is not clear, and further studies are

needed to discern between possible explanations. One possibility is that two

portions of the crystal are behaving differently. This could speak to diverging

behavior at grain boundaries. Alternatively, the crystal could be twinning, and

the divergent behavior is a result of different orientations of distorted crystal

grains. The splitting could also be attributed to a more fundamental structural

change. Diffraction is the appropriate tool to differentiate between each of these

possibilities, as previous bulk measurements report only the crystal-wide aver-

age behavior.
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3.4.1 Future work

The experiment described above is ongoing. Recently, high current, high volt-

age switches have been added to pulsed magnet at the APS experimental hutch

6-ID-C to enable rapid switching of the pulsed magnet polarity. This enables

the training of uranium dioxide below 30.8 K with a magnetic field pulse > 18

T in one direction, and subsequently retraining the sample in the opposite di-

rection to investigate potential piezomagnetic effects. Further analysis of the

current data, as well as additional data taking to increase the range of 2θ values

measured under pulsed fields is being performed.

These techniques are also being applied to new, similar samples. Namely,

pulsed magnet work is now being performed on uranium nitride (UN) and ura-

nium antimonide (USb). Each of these samples have shown potential for inter-

esting magneto-elastic behavior of their own. The techniques described above

will be expanded on and improved.

3.5 Necessity of high dynamic range

In the experiment described above, greater magnetic field resolution is obtain-

able through magnetic pulse extension, so that the rate of magnetic field change

is lower, or through shorter exposure times. Pulse elongation is possible with a

larger choke coil, but this would decrease the maximum magnetic field applied

to the sample. Shorter exposure times are also possible, but the measured sig-

nal is the exposure time multiplied by flux. The signal to noise ratio must be

maintained at a high enough value to resolve the diffraction of interest. Here
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the importance of high dynamic range, particularly the ability to measure large

instantaneous flux, is clear. In the case of the MM-PAD, the main beam re-

quired minor attenuation due to the flux limitation of the detector, as discussed

in Chapter 2.

With a higher dynamic range, finer sampling of magnetic field values would

be possible resulting in less blurring due to the transient nature of the mag-

netic field in this experiment. This is related to the case of XFEL experiments on

dynamic systems. XFEL pulses with sub-picosecond durations allow dynamic

processes to be imaged with commensurate temporal resolution. However, this

is only possible if the detector in use can record a sufficient number of x-rays

in this time window. In addition to fine magnetic field sampling, high dynamic

range is required to perform this experiment in a reasonable time frame. Given

that data in this experiment is acquired for 12 miliseconds per 12 minutes, a

detector which required more beam attenuation may require multiple pulses to

measure a significant signal from each sample orientation. Beam-time at syn-

chrotron sources is a limited resource, and a high dynamic range detector helps

to maximize its utilization.

Figure 3.5 depicts a single frame from a zero field scan of the uranium sam-

ple. Details in the texture of this Bragg peak can reveal more detailed informa-

tion about the sample, and is an intriguing direction for future studies. For

example, whether separate peaks move together or separately could hint at

whether the splitting of diffracted intensity is due to twinning or some other

behavior. In any case, these data are only accessible with a high dynamic range

detector. Even in the 140 µs exposure times used in this experiment, peak sig-

nals of nearly 105 x-rays/pixel are measured. Alongside these, the signal from
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the secondary diffraction peak are more than three orders of magnitude smaller.

While the AGIPD detector could resolve this difference in intensity, it might

saturate with the exposure times used here. However, it could utilize shorter

exposure times effectively.

On the other hand, a Photon counting detector would experience extreme

pileup under these signal rates of > 5x108 x-rays/pixel/s. To utilize a pho-

ton counting detector here, the beam must be attenuated by several orders of

magnitude. Note that the dimmer peak in figure 3.9 is more than an order of

magnitude weaker than the primary peak. This plot is the sum of many frames,

however, and the dimmer peak was often more than three orders of magnitude

weaker than the dominant peak in the raw data, depending on sample orienta-

tion and magnetic field strength. If the attenuation required to prevent pileup

effects in photon counting detectors were used, the dim peak might not be dis-

cernible from background scatter at all.
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CHAPTER 4

THE HIGH DYNAMIC RANGE DETECTOR CONCEPT

Chapter 3 illustrated the importance of dynamic range to expanding exper-

imental possibilities and fully utilizing synchrotron capabilities. The MM-PAD

demonstrates that charge removal circuitry is a valuable tool to extend mea-

surable signal levels when a large, sustained x-ray signal is to be measured.

Pushing this metric further would permit better utilization of high brightness

storage ring sources. X-ray free electron lasers present a different set of chal-

lenges to x-ray detector development.

The AGIPD’s adaptive gain, discussed in Chapter 2, is designed to integrate

signals from XFELs, which produce high intensity x-ray pulses with durations

on the order of femtoseconds. It would seem that charge removal is ill-suited to

the problem of integrating large XFEL pulses because no circuitry can respond

on femtosecond time scales.

However, the peak photocurrent generated in pixels by XFEL pulses is not

quite as dire as femtosecond x-ray pulse durations suggest. While an entire

XFEL pulse reaches a detector in the span of femtoseconds, drift, diffusion, and

the plasma effect cause the resulting photocurrent to take significantly longer to

arrive at pixel integration nodes [62]. Some work has been done in the devel-

opment of the AGIPD to mitigate this effect. The AGIPD seeks to integrate all

of the charge from a single pulse as quickly as possible to achieve higher frame

rates [63]. However, it may be possible to utilize the delayed arrival of pho-

tocurrent due to the plasma effect in such a way that charge removal circuitry

can extend x-ray detector dynamic range at XFEL sources as well as storage ring

sources.
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This chapter discusses our efforts to characterize the plasma effect and eval-

uate the possibility of developing an x-ray detector which uses charge removal

to integrate very short duration, high intensity x-ray pulses. The detector frame-

work devised and discussed herein is also intended to further extend measur-

able sustained x-ray flux such that the detector would prove useful at all fourth

generation x-ray sources.

4.1 Measuring the plasma effect

The plasma effect refers to the case when a sufficiently large number of electron-

hole pairs are generated in a sufficiently small volume of a photo-sensor so as to

behave like a plasma cloud. High intensity x-ray pulses can lead to the plasma

effect in silicon diodes. An electron-hole plasma expels the photodiode electric

field which would ordinarily separate charge carriers and bring them to respec-

tive sensor terminals. Instead of the charge cloud being separated in bulk, the

surface of the plasma cloud is wicked away by the expelled electric field while

the interior of the plasma remains relatively shielded. This slows down the ac-

cumulation of photocurrent at pixel integration nodes.

To better understand this process, and to assess the prospect of charge re-

moval operation at XFELs, we have utilized the transient current technique to

measure photocurrent transients from a pixelated silicon diode illuminated by

a focused infrared laser.

Infrared laser wavelengths were chosen to match the attenuation length of

x-ray photons in silicon. For example, 950 nm infrared light has the same atten-

uation length in silicon at room temperature as 8 keV x-rays. As a result, absorp-
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tion of an intense 950 nm laser pulse in a silicon diode produces an electron-hole

pair distribution in the sensor which is similar what would be expected from a

pulse of 8 keV x-rays. Table 4.1 enumerates several x-ray energies along with

their attenuation length in silicon and the IR wavelength with the same attenu-

ation length in silicon. Figure 4.1 is a graphical comparison.

X-ray Energy Attenuation IR Wavelength
Length in Silicon

2 keV 1.53 µm 547 nm
4 keV 9.68 µm 780 nm
6 keV 30.3 µm 893 nm
8 keV 67.8 µm 950 nm

10 keV 130 µm 992 nm
12 keV 224 µm 1016 nm
14 keV 353 µm 1033 nm
16 keV 521 µm 1046 nm
18 keV 734 µm 1055 nm

Table 4.1: Table listing some x-ray energies, their attenuation length in silicon,
and the IR wavelength with a matching attenuation length in room temperature
silicon. X-ray attenuation lengths were drawn from the NIST database [64], and
IR photon attenuation lengths were drawn from [65].
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Figure 4.1: Attenuation length in silicon of x-rays (left) matches attenuation
length in silicon of IR photons (right). The green line highlights the correspon-
dence of 12 keV photons to 1016 nm photons. In this way, IR laser pulses can
simulate XFEL pulses.

We built on previous studies [66], increasing the laser intensity employed by

two orders of magnitude, to investigate the delay of photocurrent collection due
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to the so-called plasma effect. We hope to maximally exploit this mechanism,

extending charge collection times of femtosecond XFEL pulses to microseconds.

This extended pulse duration may allow for charge removal techniques, per-

haps modifications of the technique employed in the MM-PAD, to be used at

XFELs.

4.1.1 Experimental apparatus

1 Data was collected by focusing a tunable, pulsed IR laser (EKSPLA PT259-AO-

H) to a 5 ± 1µm rms spot on a custom diode modeled after the variety intended

for use with the HDR-PAD which is described in the next subsection. Figure 4.3

depicts the experimental apparatus and beam path. The laser pulse duration

was 10.5ps FWHM as measured by the manufacturer. The laser was equipped

with a pulse picker which enables a user defined pulse repetition rate below the

laser’s natural 1MHz rate. The tunable wavelength range was 700 nm − 1050

nm with a line width between 0.18 nm − 0.36 nm. The precise line width varies

throughout the wavelength range of the laser.

As mentioned above, the purpose of a selectable wavelength is to simulate x-

rays of different energies. Computational simulations were performed to ensure

that the finite line width (FWHM of the power spectral density) of the laser

would be sufficiently small, assuming a Gaussian distribution of wavelengths

in the pulse. Figure 4.2 plots the generated hole density of a simulated laser

pulse in one micron slices of a silicon sensor versus sensor depth for a 1016 nm

laser pulse. A larger line width, particularly at longer wavelengths where the

1Dr. Julian Becker provided invaluable assistance in developing this apparatus and perform-
ing these measurements.
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attenuation length in silicon of IR photons changes more rapidly as a function of

wavelength, leads to electron-hole pairs being created at different depths in the

sensor than intended. Based on these simulations it was determined that a sub-

nanometer line width had a negligible effect on the distribution of electron-hole

pairs in the sensor.
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Figure 4.2: Simulated hole density created in one micron slices of a silicon sensor
as a function of depth into the sensor for a laser pulse of 1016 nm wavelength
photons with various spectral distributions at normal incidence. The laser pulse
was simulated with 6 µm pulse radius and 1011 eV pulse energy at room tem-
perature.

The maximum pulse energy was > 107 keV. Pulse-to-pulse energy variations

were measured with a 1% silvered mirror which directed a fraction of pulse en-

ergy to an ancillary diode, hereafter referred to as the beam-split diode. The
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beam-split diode read out its measured transient alongside the main pulse sig-

nal transient to a DPO 7254C oscilloscope with a 2.5GHz bandwidth. The beam-

split diode was calibrated with J-10GE-LE Quantum EnergyMax pyroelectric

laser pulse energy meter. The pyroelectric pulse energy meter produces a volt-

age pulse in response to a change in sensor temperature due to incident laser

pulses. The energy meter selected is NIST calibrated and serves to pair beam-

split diode measurements with absolute pulse energies. During calibration, the

pyroelectric energy meter was placed at the sample diode location. By taking

a series of measurements with both the beam-split diode and the energy meter,

the correspondence between beam-split measurements and actual pulse energy

arriving at the sample was measured.

The beam path consists of the aforementioned 1% silvered mirror followed

by a filter wheel. The filter wheel allowed larger variations in pulse energy to be

explored, but no filter was used when measuring peak pulse energy photocur-

rent transients. The filter wheel is followed by a Galilean telescope to expand

the pulse to the subsequent achromatic doublet lens’s full aperture to maxi-

mize beam focusing. The target diode and support electronics were mounted

on translation stages which were controlled by the same computer which con-

trolled the laser, permitting parametric scans.

Target photodiode

A custom diode array was designed to read photocurrent transients directly to

an oscilloscope while mirroring the sensors used in previous x-ray detectors

built by our group as closely as possible. The diode array is 500µm thick n-type

high resistivity silicon with a 120V depletion voltage and 150µm x 150µm pixel
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Laser Beam Sampler Custom Diode 

Oscilloscope Aperture and Lens Telescope Filter Wheel 

Figure 4.3: Laser beam path for transient current technique studies. The pulsed
infrared laser is controlled by a computer (not shown) which coordinates the
oscilloscope readings. Laser pulses pass through a beam sampler which con-
sists of an 1% silvered mirror at 45 degrees to the beam path. A dedicated diode
reads the fractional pulse to record pulse-to-pulse energy variations. The main
pulse then passes through a filter wheel which enables large scale pulse inten-
sity variation. The pulse is subsequently expanded through a Galilean telescope
to permit tighter focus by the achromatic doublet lens. The focused pulse is ab-
sorbed by a custom silicon photo diode and the photocurrent transient is routed
to the oscilloscope through a custom PCB. The main pulse transient and split
pulse transient are read by the oscilloscope to the data acquisition computer.

pitch. The pixelated structure of the diode enabled measurement of the lateral

diffusion of the charge cloud.

The diodes employed in Gruner group x-ray detectors are biased by ap-

plication of a high voltage via an aluminum layer on the x-ray entrance side.

This layer is essentially transparent to x-rays, but would be significantly more

opaque to infrared photons. As such, an opening in the aluminum above tar-

get pixels was required. The diode included four target pixels below the alu-

minum opening in a 2x2 square. These target pixels were surrounded by sev-

eral rings of non-target pixels. In a pixelated sensor, the uniformity of voltage

across adjacent pixels is essential. If adjacent pixels are held at different biases,

charge deposited above one pixel may enter another, resulting in image distor-

tion. In this customized diode, it was necessary to maintain voltage control of
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non-target pixels. Non-target pixels were ganged together by uniform back-side

aluminization which could be biased by a single wire bond. Because no ASIC

layer was being designed to accompany the sensor, photocurrent of interest was

to be routed through wire bonds to support electronics. Each of the four target

pixels was individually wire bonded.

Wire bonds were made to a custom printed circuit board (PCB). The PCB to

which the sensor was wire bonded also provided the high voltage bias. The PCB

was designed by Dr. Julian Becker with a metal lined hole to which the entrance

window of the target diode was attached with silver paint. The high voltage bias

was supplied through the hole’s metalization and laser pulses struck the target

pixels through the hole in the PCB. Circuitry on the PCB capacitively coupled

target pixels to an amplifier which fed measured transients to an oscilloscope.

Schematics for the PCBs employed in this work are contained in Appendix A.

While measuring the incident photocurrent, slight variation in the target

pixels’ voltages were unavoidable, but a bias-tee, consisting of a connection

to the bias voltage through an inductor, and a connection to the readout am-

plifier through a capacitor, ensured that the pixel would quickly return to an

AC ground. Similar bias-tees were used to bias non-target pixels and the sen-

sor. These signals were also measured. Photocurrent transients were terminated

with 50Ω and measured by a Tektronix DPO 7254C oscilloscope. All lines were

terminated with 50Ω to minimize the impact of reflections on signal lines.
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4.1.2 Transient current analysis

A single IR photon in the wavelength range studied here does not have suffi-

cient energy to create an electron-hole pair in silicon. As a result, absorption

of IR photons in silicon is phonon assisted, and in subsequent analysis, it is

assumed that each IR photon creates one electron-hole pair. Studies of high

intensity sub-band gap radiation incident on silicon have noted a power depen-

dance in the absorption of photons in silicon and the onset of significant nonlin-

ear effects such as two-photon absorption [67]. Optical nonlinearities are often

characterized by the Kerr coefficient, in silicon for IR photons is on the order

of 10−18 m2/W [68]. The present experiment utilizes a peak laser power on the

order of 40 watts with a spot size of roughly 36 µm2. This suggests that changes

in the index of refraction of silicon during absorption of the laser pulses used

here are on the order of 10−6 and so these nonlinear effects should be negligible.

In comparing IR pulse energy to x-ray pulse energies, it is thus necessary to

calculate the number of IR photons in a given pulse. This is done by first as-

suming that the pulse is monochromatic. Given the small line width of the laser

employed, this is a reasonable assumption. The absolute energy of the laser

pulses used here were calibrated as described in the section above. With the ab-

solute energy known and monochromaticity assumed, the number of photons

in a given pulse is simply the pulse energy divided by the energy of a single

photon, hc
λ

. We then assume that this is the number of electron-hole pairs cre-

ated in the silicon diode by this pulse. By matching the attenuation length of

the IR pulse wavelength to that of an x-ray energy, we divide the x-ray energy

by 3.6eV (the energy required to create an electron-hole pair in silicon), and di-

vide the number of electron hole pairs created by the IR pulse by this number

88



to arrive at the equivalent x-ray pulse energy.

Because the plasma effect is a function of illuminated volume, laser spot size

needed to be measured. The opening in the target diode high voltage biasing

aluminization which allowed IR pulses to strike target pixels, described in the

previous section, provided a convenient knife edge with which to measure the

laser pulse profile. By translating the target diode perpendicular to the incident

beam while collecting pulse data from target pixels, such that the aluminization

blocks part of the incident pulses, we can plot a curve which is the signal mea-

sured by the target pixels as a function of pulse position. The derivative of this

curve tells us the laser intensity that is cut off from the target pixels by the high

voltage aluminization with each translation step. This provides a reconstruction

of the lateral pulse profile. Figure 4.4 is a plot of one of these scans with a one

micron step size and a Gaussian fit to the data. The fitted standard deviation is

< 6µm. To obtain information longitudinal to the beam, which includes infor-

mation about pulse focusing, this procedure was performed at various lens-to-

diode distances.

Photocurrent transients from XFEL-like pulses have the characteristic shape

illustrated in Figure 4.5, which is an average of one hundred 950 nm photocur-

rent transients from laser pulses which create electron-hole pair distributions

similar to 106 8 keV photons, measured with 200V sensor bias. Generally speak-

ing, photocurrent arrives in two phases: an initial spike arising largely from

induced current [69] followed by a long tail as charge carriers drift to the sensor

terminals. In the transient plotted, roughly 10% of total deposited charge arrives

in the spike followed by a tail photocurrent roughly equivalent to that produced

by 1011 8keV x-rays/s. However, these numbers vary significantly based on fac-
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Figure 4.4: Gaussian fit to derivative of lateral translation scan of target diode
with 950nm laser incident. The fitted line describes the laser pulse profile in one
dimension perpendicular to the beam path.

Figure 4.5: Characteristic shape of photocurrent transients produced by high
intensity pulses (> 104 x-rays). The transient above is an average of one hundred
950 nm pulses (equivalent to 8 keV attenuation length) with a mean single pulse
energy equivalent to 106 8 keV x-rays. The sensor was bias was 200 V.
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tors including photon energy, area illuminated, and sensor bias, among others.

Pulses of lower energy x-rays and higher intensities create denser electron-hole

pair clouds leading to a larger fraction of deposited photocurrent arriving in

the tail portion. Lower diode bias voltages extend charge collection times fur-

ther. The charge collection times measured are still significantly shorter than

recombination times in silicon. Pulses equivalent to < 103 x-rays are collected

completely in 10-40 ns, appearing as only a spike, while focused pulses equiva-

lent to > 104 x-rays produce photocurrent tails that can take microseconds to be

collected by pixels.

Figure 4.6 is a plot of the normalized integral of photocurrent arriving at

a pixel versus integration time for three pulse energies with wavelength 1016

nm (12 keV equivalent attenuation length). For reference, the integrated charge

versus time of a low intensity pulse (equivalent to < 103 x-rays, simulated from

previous work [66]) with negligible plasma effects is plotted alongside the data.

Integrals are normalized to the total charge integrated by the monitored pixel,

which differs from the total charge created by the pulse due to lateral charge

spread. Pink dots denote the point at which charge equivalent to 104 x-rays has

been integrated. Even for a pulse equivalent to only 6x104 12 keV x-rays, charge

equivalent to 104 x-rays is integrated within 5 ns of pulse onset.

Figure 4.7 demonstrates how durations of transient tails increase as a func-

tion of total pulse energy for three x-ray energy equivalents. Charge collection

of 8 keV x-ray equivalent pulses occurs over significantly longer time scales

than higher x-ray energy equivalent pulses. This is because the attenuation

length of 8 keV x-rays in silicon is significantly shorter than that of 10 keV or

12 keV x-rays. As a result, charge is deposited in a much smaller volume of the
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Figure 4.6: Normalized integrated charge versus integration time of 1016 nm
(12 keV equivalent attenuation length) pulses at three pulse energies. The red
dotted line is a low energy pulse (< 103 x-rays, simulated from previous work
[66]) for reference. Sensor bias was 200 V.

Figure 4.7: Average pulse duration as a function of total pulse energy at three
wavelengths. Pulse durations were measured as time above two times the stan-
dard deviation of background noise. Sensor bias was 200 V.
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sensor, leading to denser electron-hole pair clouds and therefore more persis-

tent plasma effects. Charge collection times of 12 keV equivalent IR pulses do

not reach more than 1 µs with the spot size and pulse energies tested here, but

the charge collection times measured are still significantly longer than the laser

pulse duration.

Figure 4.8: Averaged photocurrent traces from 950nm laser pulses focused to 6
µm incident on a 500 µm thick silicon diode. The diode bias was 200 V.

Figure 4.8 shows plots of averaged photocurrent transients from a range of

950 nm pulse energies versus time. The plasma effect is evident in the depen-

dance of charge collection time on pulse energy.
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4.1.3 Conclusions

Figure 4.5 is an average of one hundred 950 nm pulse photocurrent transients

with a mean pulse energy that produced electron-hole pairs equivalent to 106 8

keV x-rays. This profile is characteristic of all measured pulses which exhibited

signs of the plasma effect. Overall, the charge collection profile is extremely sen-

sitive to wavelength, spot size, and pulse energy. However, some conclusions

can be drawn.

The plasma effect is most pronounced for lower energy x-ray equivalents

which produce denser plasma clouds. Thus, the strategy of using plasma clouds

to slow charge arrival is more promising for 8 keV x-ray pulses, compared to the

other x-ray equivalents tested here. Charge collection times for sufficiently fo-

cused pulses do extend to microsecond time scales. Despite the extended charge

collection time, significant photocurrent still arrives in the initial spike and may

prove problematic for pulse energies greater than 106 8 keV x-rays.

A strategy to integrate pulses of this nature may be possible and might in-

volve adaptive gain handling integration of the initial photocurrent spike and

charge removal circuitry handling the drawn out tail. While in-pixel charge

removal techniques are not fast enough to act on femtosecond time scales, we

have shown that photocurrent from large pulses can arrive over microseconds,

a time scale on which MM-PAD style charge removal techniques may prove

useful.
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4.2 Adaptive gain and charge removal combined

The ”spikes“ measured in the IR laser pulse photocurrent transients above de-

posit too much charge in pixels too quickly for a charge removal scheme to ac-

curately record signals. An adaptive gain scheme is capable of measuring these

signal bursts, but the full well of an adaptive gain pixel is ultimately limited by

integration capacitor size, and therefore, pixel size. The full well scales linearly

with these quantities. The charge removal of the MM-PAD achieves a full well

that is limited by the depth of a digital counter, which doubles with each suc-

cessive bit added. The tradeoff is of course that photocurrent integration now

has a rate limitation.

Combining an adaptive gain scheme with a charge removal scheme similar

to that of the MM-PAD provides two primary benefits. First, the ”spike“ of

intense x-ray pulses can be integrated by the adaptive gain circuitry. As seen

above, the majority of signal charge arrives over a longer time scale, perhaps

long enough for charge removal circuitry to operate. If this tail arrives after

adaptive gain circuitry has already activated, it is possible to use a larger charge

removal capacitance. The maximum flux measurable by one MM-PAD pixel in

its present form is

Φ = ∆V ∗Crem ∗ f /qx (4.1)

where Φ is the maximum flux, ∆V is the voltage difference between the front

end voltage and Vlow, Crem is the size of the charge removal capacitance, f is

the maximum frequency of charge removal, and qx is the number of electron-

hole pairs created per x-ray. Crem should not exceed Cint, the integration ca-

pacitance, or charge removal could result in pulling the integrator out of its

operating range and produce erroneous measurements. Adaptive gain allows
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Crem to be increased by several orders of magnitude by virtue of Cint increasing

step-wise, thus increasing the maximum flux measurable by a pixel employing

charge removal.

In addition to possibly integrating XFEL like pulses studied in this chapter,

combining adaptive gain with charge removal allows pixels to integrate a signif-

icantly higher sustained x-ray flux. This capability would be exceedingly useful

at high brightness storage ring sources. Chapter 5 will outline several pixel ar-

chitectures which utilize both adaptive gain and charge removal circuitry. An

ASIC with pixel test structures pursuant to this strategy was fabricated, and

their testing is discussed.
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CHAPTER 5

PIXEL SUBSTRUCTURE TESTING

Combining charge removal with adaptive gain could increase the dynamic

range attainable by a pixel array detector at XFELs and high brightness syn-

chrotron sources by several orders of magnitude. To roughly estimate the po-

tential gains, consider the performance of the MM-PAD, described in Chapter 2.

The MM-PAD is capable of measuring a sustained flux of 108 8 keV x-rays per

pixel per second. With an adaptive gain front-end increasing the integration

capacitance by, say, a factor of 25, the charge removal capacitance can be corre-

spondingly increased, resulting in a factor of 25 higher sustained flux limit. It

may also be possible to increase the maximum rate of charge removal, which

would further extend this limit. A factor of 4 increase in the rate of charge re-

moval would result in a net sustained flux 100 times higher than the MM-PAD.

As seen in the previous chapter, such a pixel could potentially measure high

intensity XFEL pulses as well.

Extending the performance of a pixel array detector pixel is not trivial. For

example, increasing the maximum rate of charge removal too much will result

in incomplete elimination of integrated charge, and thus produce an unreliable

measurement. Furthermore, the MM-PAD relies on holding the front-end at a

fixed voltage to ensure the uniformity of charge removal operations. To achieve

this, the front-end amplifier will have to respond quickly to large signals with a

correspondingly high slew rate.

To examine the feasibility of a detector utilizing both adaptive gain and

charge removal in the same pixel, an ASIC was fabricated with several pro-

totype pixel front-end architectures in TSMC 180nm mixed signal general-
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purpose II 1P6M salicide technology with 2 fF/µm2 MIM-caps and thick top

metal through Europractice.1 This chapter discusses these prototype pixel de-

signs and their ability to integrate high currents. Chapters 6 and 7 discuss a

16x16 pixel, fully functional pixel array detector constructed with pixel archi-

tectures based on the designs discussed below.

The work discussed here was a collective effort. While all team members

worked together, the majority of developmental work on particular components

can generally be attributed to particular scientists. The MM-PAD 2.0 pixel was

developed by Dr. Katherine Shanks, the charge dump oscillator was developed

by Dr. Hugh Philipp, and I developed the capacitor flipping pixel. FPGA pro-

gramming to orchestrate the chip’s operation was written by Prafull Purohit and

the support electronics were designed and laid out by Darol Chamberlain. Dr.

Mark Tate and Professor Sol Gruner were also instrumental in the development

of these structures.

5.1 Pixel architectures

This section discusses the concepts and architectures of three pixels that were

designed. The test ASIC discussed in this chapter generally featured only the

pixel front-ends, excluding components such as digital counters and analog

readout chains. In two cases, adaptive gain was not included, but the inte-

gration capacitance was chosen to simulate the low gain stage of an adaptive

gain system. A full adaptive gain system was omitted in these pixels to test

1At the time of the writing of this dissertation, all relevant design files are located on
the Gruner group server “People” in directory /us/Detectors-EssentialInformation/
HDR-PAD/HDR-PAD_Sub1/.
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new charge removal strategies with minimal extraneous complications. It will

be made clear which components were fabricated in each case. The pixel com-

ponents were connected to probe pads at various points to permit examination

of the inner workings of the components. A probe pad on the integration node

of each pixel was used to inject current directly into the pixel input, simulating

an x-ray photocurrent signal. Pixel performance is discussed below.

5.1.1 MM-PAD 2.0

The first pixel architecture (MM-PAD 2.0) is a scaled version of the original MM-

PAD and is depicted in figure 5.1. In contrast to the MM-PAD, the MM-PAD 2.0

incorporates adaptive gain, as demonstrated previously by detectors such as

the AGIPD [4]. The MM-PAD 2.0 charge removal circuit will not trigger un-

less the lowest-gain stage has been engaged. This allows the use of a larger

charge removal capacitor than in the original MM-PAD, thereby increasing ∆Q,

the charge removed with each execution of the charge removal circuitry. In

the readout ASIC discussed here, 6 combinations of total feedback capacitance

and charge removal capacitance were tested. Charge removal capacitors ranged

from 440fF to 2630fF with equal or greater total integration capacitance in each

case. Larger charge removal capacitors allow a pixel to integrate higher pho-

tocurrents by increasing ∆Q. The range of capacitance employed allowed ex-

amination of the maximum integration and charge removal capacitance which

would function adequately.

Charge removal capacitors of 1800fF and 2630fF (with matched integration

capacitors) exhibited incomplete charge removal at the maximum oscillator fre-
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Figure 5.1: Simplified MM-PAD 2.0 schematic. Control logic box engages adap-
tive gain prior to enabling switched capacitor charge removal.

quency, 100MHz. Based on simulations, this is most likely due to the RC con-

stant of the charge removal circuit, which increases with the size of the charge

removal capacitor. A version of the pixel with a total maximum feedback capac-

itance of 2630fF and a charge removal capacitance of 880fF exhibited the most

robust performance. The results presented in this chapter are from this variant.

The high-gain stage has a feedback capacitance of 40fF, small enough to resolve

the signal from one 8 keV x-ray. To increase measurable sustained flux further,

the maximum frequency of charge removal has been increased by a factor of 50,

to 100 MHz.

Integrating high flux signals requires commensurate amplifier slew rates.

The integrating amplifier of the MM-PAD 2.0 is a class AB operational transcon-

ductance amplifier based on [70]. This topology was chosen for its high current

output, boosted by local common-mode feedback, rapid settling time, and rel-

atively low power consumption. Section 5.2 contains a detailed discussion of

the amplifier architecture. The comparator employed is asynchronous and opti-
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Figure 5.2: MM-PAD 2.0 gated oscillator and charge removal switched capacitor
block level schematics.

mized for response time. It is composed of a five transistor differential amplifier

driving an inverter. These components varied only slightly between the three

pixel architectures discussed in this chapter.

The pixel components fabricated in this test ASIC include the front-end inte-

grating amplifier with full adaptive gain and charge removal circuitry. Charge

removal control signals, adaptive gain control signals, and comparator output

were connected to probe pads for external measurement alongside the integra-

tor analog output and front-end voltages.

MM-PAD 2.0 charge removal

The charge removal circuitry, depicted in figure 5.2, consists of a gated oscillator

which toggles a switched capacitor to remove charge from the integration node

(pixel front-end). The gated oscillator pulse width and maximum frequency is

set by Cosc1,2 and the tunable current mirror Mosc. Cosc1 and Cosc2 are equal sized
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capacitors. It is the same topology as the original MM-PAD. When the com-

parator activates the NAND gate, the Cosc capacitors begin charging. Once its

voltage passes the inverter threshold, the inverters connect Crem to the pixel in-

tegration node and Cosc begins discharging. Once the capacitors Cosc1,2 have dis-

charged, the charge removal signal is brought low again. The charge removed

per oscillator pulse is

∆Q = Crem(Vre f − Vlow). (5.1)

The MM-PAD 2.0 can tolerate larger photocurrent spikes (integrating > 103 x-

rays before relying on charge removal) and larger sustained photocurrents than

the original MM-PAD.

5.1.2 Charge dump oscillator

The charge dump oscillator (CDO) pixel design aims to scale the rate of charge

removal with the rate of charge arrival by combining the charge removal

switched capacitor with the oscillator driving it. Depicted in figure 5.3, the fre-

quency of charge removal is set by the propagation of digital signals in the ring

oscillator and the charging rate of the removal capacitor, Crem. When a compara-

tor indicates that a threshold has been crossed, the oscillator is activated and

Crem connects to the integration node. Once Crem has charged to the switching

threshold of the adjacent inverter, the capacitor is detached and the charge ac-

cumulated onto it is dumped to ground. The faster Crem charges while attached

to the front-end, the faster charge is removed.

In addition to one comparator monitoring the integrator output, as in the

MM-PAD, a second comparator monitors the pixel front-end voltage. Charge
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Figure 5.3: Simplified CDO schematic. The ring oscillator charge removal cir-
cuitry is enclosed in the dashed box. Selectable gain was replaced with an adap-
tive gain scheme in a subsequent fabrication.

removal is also triggered by any significant deviations of this voltage from Vre f .

Deviations from Vre f indicate that the integrator is unable to keep up with inci-

dent photocurrent, in which case charge removal is needed. If the integration

node is unable to be maintained at Vre f some error in integration is inevitable.

At low x-ray flux, the circuit operates similarly to the MM-PAD, but the

tracking of charge removal rate with incident photocurrent should allow the

CDO to continuously integrate larger sustained inputs. As depicted in figure

5.3 the CDO variation tested here utilizes a selectable gain, which was replaced

with adaptive gain circuitry in the 16x16 pixel array test ASIC described in
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Chapter 6. Additionally, the integrating amplifier studied here is a simple, five

transistor differential amplifier. The amplifier is intentionally incapable of high

current integration. Its use was intended to ensure that the pixel in this test ASIC

would rely more heavily on the charge dump oscillator circuitry. The amplifier

has been replaced by a class AB amplifier similar to that of the MM-PAD 2.0

in subsequent pixel iterations. Both comparators in the pixel are asynchronous,

composed of a five transistor differential amplifier driving two inverters.

The pixel components fabricated in this test ASIC include the integrating

amplifier with selectable gain and the full charge dump oscillator circuitry with

comparators monitoring both the front-end voltage and integrating amplifier

analog output voltage. Both comparator output signals, the in-pixel OR combi-

nation of them, the oscillator output, and the integrating amplifier output volt-

age were buffered off chip for external measurement.

Charge dump oscillator charge removal

The CDO charge removal circuitry is depicted in the dashed box in figure 5.3.

The timing of charge removal is controlled by the charging of Crem, but rather

than a current source controlling the rate of charging as in the MM-PAD 2.0,

the rate of charging is controlled by the rate at which charge is pulled from

the integration node. The charge removal timing capacitor is also the charge

removal capacitor. In this way, the charge removal rate can increase when the

front-end integration node is flooded with signal charge. The amount of time

that Cosc is connected to the front-end also depends on the switching threshold

of the first inverter in the chain. While the inverter thresholding of the CDO

is very fast, it is more susceptible to fabrication process variation than the other
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designs presented here. In this case, variation could result in different quantities

of charge removed per cycle in each pixel. Although this can be calibrated, it is

an additional complication. The charge removed per charge removal execution

is

∆Q = CoscVre f . (5.2)

as Crem discharges to ground.

5.1.3 Capacitor flipping pixel

The third pixel front-end fabricated and tested relies on a charge removal

method based on the flipped capacitor filter described in [71]. The capacitor

flipping pixel integrator uses two equally sized integration capacitors connected

in parallel, depicted in figure 5.4. One of the two integration capacitors is con-

nected via a network of CMOS switches so as to allow the capacitor’s polarity

in the circuit to be reversed. Adaptive gain was not incorporated in the initial

fabrication and is not shown in figure 5.4, but it was implemented in the 16x16

pixel array test ASIC described in Chapter 6.

Referring to figure 5.4, the pixel begins integration with the switches labeled

”A“ closed and the switches labeled ”B“ open. Charge is integrated onto both

equal-sized capacitors in parallel. When the integrator output crosses the com-

parator threshold, the comparator fires. This activates the control logic which

opens switches ”A“. After a brief delay to prevent shorting the integration ca-

pacitors, switches ”B“ are closed. This reverses the orientation of half of the

integration capacitance. As a result, integrated positive charge on each capac-

itor neutralizes negative charge on the other capacitor. Thus, the integrator is
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Figure 5.4: Simplified capacitor flipping pixel schematic. Dynamic thresholding
circuitry is enclosed in the dotted box. An adaptive gain scheme was imple-
mented in the most recent fabrication.

effectively reset, and can continue integrating photocurrent. Subsequent flip-

ping occurs as needed. Connections to the flipping capacitor are always broken

before new connections are made.

As with each other charge removal circuit, ∆Q depends on the front-end volt-

age of the integrator. To reduce the error introduced by changes in the front-end

voltage due to large current spikes, a dynamic thresholding circuit was devised.

Control was added such that dynamic thresholding can be toggled externally:

the pixel comparator can use an external reference voltage to define the thresh-

old at which capacitor flipping is initiated, or it can be set dynamically. In the

dynamic case, a level-shifted copy of the front-end voltage is used to set the ca-

pacitor flipping threshold voltage. This ensures that there is a specific voltage

across the integration capacitance at the time of the comparator firing, precisely

the level shift voltage. However, due to the dependance of ∆Q in this method
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on both the integrator input and output nodes, an input rate dependent error

is introduced by delays in the capacitor flipping control logic. These errors are

investigated in section 5.3.2.

The dynamic thresholding block level schematic is depicted in figure 5.4.

The level shift is set by a diode drop within the pixel, though this was changed

in subsequent interation of the pixel. The integrating amplifier of the capacitor

flipping pixel is a class AB amplifier similar to that of the MM-PAD 2.0, but op-

timized independently. The comparator is again asynchronous: a five transistor

differential amplifier driving two inverters. The gated oscillator which controls

the capacitor flipping is a ring oscillator.

This pixel components fabricated in this test ASIC include the integrating

amplifier, capacitor flipping switches and control logic, make-before-break cir-

cuitry, and an externally toggled dynamic thresholding circuit. Capacitor flip-

ping signals A and B, comparator output, front-end voltage, integrating ampli-

fier analog output voltage, and the level-shifted threshold voltage were buffered

off chip for measurement.

Capacitor flipping pixel charge removal

Make before break circuitry ensures that the integration capacitor to be flipped

is disconnected before it is reconnected in reversed orientation. This prevents

shorting the integration capacitors, which would neutralize signal charge in an

uncontrolled way. Maximum rate of charge removal and charge removal pulse

width is set by an inverter chain delay. The duration of this delay was set based

on simulation to ensure complete charge neutralization between capacitor flips.
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The charge removed per charge removal execution depends on the integrator

output voltage:

∆Q = 2Cint(Vre f − Vout). (5.3)

The factor of two accounts for charge on both capacitors being neutralized as Cint

is half of the total integration capacitance. Vout is the output voltage sampled at

the time of Cint disconnect. Dynamic thresholding aims to keep Vre f − Vout at a

fixed value in each charge removal execution.

5.2 Integrating amplifier

Each of the three pixel architectures tested here utilize similar integrating ampli-

fiers. The integrating amplifier of the CDO in this test ASIC is not the topology

discussed below, but subsequent iterations of the pixel do use this architecture.

The design goals of the pixels discussed here are demanding. In general, to

measure a large photocurrent with a charge sensitive amplifier, an equal cur-

rent must be supplied by the amplifier. A flux of 1011 8 keV x-rays absorbed in a

silicon photodiode corresponds to more than 35µA photocurrent. The integrat-

ing amplifier of these pixels must be capable of outputs on this level. However,

these pixels should be designed with scaling in mind. Ideally, the pixels would

be fabricated in an array of 128x128 pixels, more than sixteen thousand total

pixels, so the in-pixel circuitry must have a low average power consumption.

Additionally, an amplifier used with a charge removal system must be ca-

pable of high slew rates in both positive and negative directions. The amplifier

must have an output that keeps up with incident photocurrent, but also brings

the front-end voltage back to its quiescent point quickly after each charge re-
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moval execution. For these reasons a class AB topology based on the work of

Carvajal et al. was chosen [70].

Class AB amplifiers combine the benefits of both class A and class B am-

plifiers while attempting to minimize their shortcomings. Class A amplifiers

maintain a constantly biased output stage and thus exhibit minimal output dis-

tortions for signals in their full range. However, poor power efficiency and

current utilization are inevitable in conditions where the full bias current is

not required by the load being driven. A class A amplifier in the pixels dis-

cussed above would consume far too much power because the maximum drive

required is very large. On the other hand, class B amplifier outputs are nearly

off in quiescent conditions. The cost of this low power consumption is signal

distortion in some input regimes.

Here a two stage AB topology is used in an effort to optimize both gain

and output swing, as the full well of an integrator is linearly proportional to its

output swing. The disadvantages of a multi-stage amplifier include added com-

plexity, increased power consumption, and reduced bandwidth. These tradeoff

can be mitigated and in this case are ultimately worthwhile.

Slight variations of the topology depicted in figure 5.5 were implemented

in each of the pixels discussed in this dissertation. The amplifiers were indi-

vidually tuned in each pixel, but the general operating principals are the same.

To understand the architecture, we can break the schematic into several parts.

Transistors M1 and M2 are the input transistors. The output stage is composed

on transistors M4 and M8. Transistors symmetric about a vertical line down the

middle of the schematic are matched in size.
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Figure 5.5: Class AB amplifier topology utilized in pixel prototypes. Architec-
ture adapted from [70].

5.2.1 Flipped voltage follower

Transistors M1A, M2A, and the current source IB form a flipped voltage follower,

as do their counterparts M1B, M2B, and the second IB. The architecture is dis-

cussed in detail in [72] and is named by Carvajal et al. the flipped voltage fol-

lower (FVF). Consider the transistors M1B, M2B, and their current source IB. To-

gether these transistors form a DC level shifter with very low output impedance,

which permits high current draw.

The current source IB is a single transistor with an external bias which sets

the minimum current draw of the FVF. The current through M1B is IB. Assuming

that the transistors are operating in saturation and channel length modulation

110



is negligible,

IB = I1B =
1
2
µpCox

W1B

L1B
(Vs1 − Vin+ − Vthp)2, (5.4)

where µp is the hole mobility, Cox is the gate-oxide capacitance per unit area, Wm
Lm

is the width to length ratio of transistor m, Vsm is the source voltage of transistor

m, and Vthp is the PMOS threshold voltage. For the sake of concision in this

chapter, the term µn,pCox
Wm
Lm

will be defined

βm ≡ µn,pCox
Wm

Lm
(5.5)

for transistor m, where the applicable mobility can be inferred from the schemat-

ics referenced.

Given equation 5.4, we know that

Vs1 =

√
2IB

β1B
+ Vin+ + Vthp, (5.6)

which is a level shifted copy of Vin+. Similarly,

Vs2 =

√
2IB

β1A
+ Vin− + Vthp. (5.7)

The input of one half of the amplifier linearly shifts the source voltage of the in-

put transistor in the other half. This adaptive biasing applies differential inputs

to both the gate and source of the input transistors, doubling the transconduc-

tance of the differential pair. As a result, the amplifier can be biased such that

the quiescent current is low, but a differential signal will still initiate a strong

response.

The current through the input transistor M1 is then

I1 =
β1

2


√

2IB

β1B
+ V∆


2

(5.8)
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where V∆ ≡ Vin+ − Vin−. The current through the input transistors flows to the

current sinks M6 and M7 and sets the output voltages which serves as the input

voltages for the second stage of the amplifier. Before examining the output stage

however, we must address resistors R1 and R2 which set the bias on the current

current sinks and provide common mode feedback.

5.2.2 Local common mode feedback

The bias of M6 and M7 could be set externally, making them simple current mir-

rors. In this case, the maximum downward slew rate of the first stage would be

limited by this bias current. Matched resistors R1 and R2 are added to provide

local common mode feedback (LCMFB) as demonstrated in [70] and discussed

in [73]. For Vin+ = Vin− the current across these resistors is zero. If the voltage of

the first stage output nodes, Vd1 and Vd2, rise in unison, the gate voltage of the

current sources rises as well, and they sink more current to combat the change.

Similarly, decreases in the gate voltage are resisted. Transistors M6 and M7 be-

have like diode connected transistors for common mode signals. As such, they

have low output impedance

Rout ≈ 1/gm6 (5.9)

where gm6 is the transconductance of transistor M6. The gain of the first stage in

common mode conditions is therefore low. With V∆ = 0, I1,2 = I6,7 = IB and the

gate voltage of M6,7 is equal to the drain voltage of M1,2,

Vd1,2 = Vthn +

√
2IB

β6,7
, (5.10)

assuming saturation of M6,7 and matching of transistors M1,2 with M1B,1A.
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However, when a differential signal is applied R1 and R2 maintain the gate

voltages of M6 and M7 at a common voltage, so the transistors behave more like

current sources. The first stage exhibits a higher output impedance:

Rout ≈ R1||ro1||ro6, (5.11)

where rom is the drain-source impedance of transistor m and Rn||Rm indicates the

resistance of Rn and Rm in parallel.

More quantitatively (following the work in [70]), for a differential signal

V∆ = Vin+ − Vin− a current flows through the feedback resistors R1,2. If channel

length modulation is negligible, M6 and M7 sink equal currents because they

have equal Vgs, so the current through the resistors is half the difference be-

tween branches, IR = (I1 − I2)/2. The current through M6 and M7 is the common

mode current, Icm = (I1 + I2)/2. The common gate voltage of M6 and M7 is

Vg6,7 = Vthn +

√
2Icm

β6,7
(5.12)

and the drain voltages of M1 and M2 respectively are

Vd1 = Vg6 + R1IR (5.13)

and

Vd2 = Vg7 − R2IR (5.14)

assuming Vin+ > Vin− and therefore I1 > I2. For Vin+ < Vin− the signs of the second

term in equations 5.13 and 5.14 are reversed.

Relative to externally biased current sources, the maximum downward slew

rate can be increased by the LCMFB, yet the first stage of the amplifier can be

designed with a low quiescent current ≈ 2IB. The adaptive action of the FVFs

113



and LCMFB aid in accomplishing the goal of low quiescent power consump-

tion with high gain. High slew rate in the first stage is important for a rapid

amplifier response. R1 and R2 can be implemented with externally biased MOS

transistors.

5.2.3 Amplifier output

Assuming that the output transistors operate in saturation and channel length

modulation is negligible, using equations 5.13 and 5.12, the current through

transistor M5 is

I5 =
β5

2
(Vd1 − Vthn)2 =

β5

2


√

2Icm

β6
+ R1IR


2

. (5.15)

This current is mirrored to M4. If we assume that the differential signal is large

and positive, IR ≈ I1/2 and ICM ≈ I1/2. Under these conditions M8 is effectively

off and the output current is

Iout ≈ I5 =
β5

2


√

I1

β6
+

R1I1

2


2

. (5.16)

Referring to equation 5.8 for the value of I1 we see that

Iout ≈
β5

2

R1β1

4
V2

∆ +


√

β1

2β6
+

R1β1

2

√
IBβ1

β1B

 V∆ +


√

IBβ1

β1Bβ6
+

R1β1IB

2β1B




2

. (5.17)

If IB is small, this reduces to

Iout ≈
β5

2

R1β1

4
V2

∆ +

√
β1

2β6
V∆


2

. (5.18)

IB in the pixels discussed here is between 5-15µA. To leading order the output

current is proportional to V4
∆
. Conversely if V∆ is large and negative, the output
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current is the current through M8,

Iout ≈
β8

2

R2β2

4
V2

∆ −


√

β2

2β6
+

R2β2

2

√
IBβ1

β1A

 V∆ +


√

IBβ2

β1Aβ6
+

R1β2IB

2β1A




2

. (5.19)

Again, if IB is small, we have

Iout ≈
β8

2

R2β2

4
V2

∆ −

√
β2

2β6
V∆


2

, (5.20)

where now we make the assumptions that IR ≈ I2/2 and ICM ≈ I2/2. Note that

V∆ is negative in equation 5.20 and the current here is flowing into the amplifier

through M8.

When V∆ is small, the current through the resistors is

IR =
I1 − I2

2
= V∆β1

√
2IB

β1B
(5.21)

from equation 5.8 and its M2 counterpart, noting that M1 and M2 are matched

transistors, as are M1A and M1B, so their β values are equal if we ignore process

variation. The common mode current is then

ICM =
I1 + I2

2
=
β1IB

β1A
+
β1V2

∆

2
, (5.22)

and the output current is

Iout = I4 − I8 = β5R1IR

√
8ICM

β6
. (5.23)

The small signal differential voltage gain of the first stage is

Vd1 − Vd2

Vin+ − Vin−
= 2gm1(ro1||ro6||R1,2), (5.24)

noting that transistors on either side of the schematic in figure 5.5 are matched

and R1 = R2. The small signal gain of both stages combined is

Vout+ − Vout−

Vin+ − Vin−
= 2gm1gm8(ro4||ro8)(ro1||ro6||R1,2). (5.25)
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Based on simulations, the gain of the implemented amplifier is 44.0dB. The

phase margin is 72.2◦. The bandwidth, described by the amplifier 3dB point, is

5.67MHz. Quiescent power consumption is 108µW with a 1.8V power supply.

Peak output current is on the order of 500µA. Output swing is nearly rail-to-rail,

but in practice the output is kept between 0.3V and 1.1V by feedback and charge

removal.

5.2.4 Noise properties

5.2.5 Pole splitting

Negative feedback is intended to ensure stability. In differential amplifiers, neg-

ative feedback implies that a scaled copy of the output signal is subtracted from

the input and the output is proportional to this difference. Consider the simple

model in figure 5.6 to see that an equilibrium is possible.

Figure 5.6: Example of negative feedback.

The amplifier has the transfer function H(s). The tear drop represents an

arbitrary feedback element with transfer function G(s) from the amplifier output

to input. The output of the amplifier is the input to the positive terminal minus
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the input to the negative terminal multiplied by the transfer function:

Vout = H(s)[Vin −G(s)Vout] (5.26)

Therefore the gain of the amplifier with feedback is

Vout

Vin
=

H(s)
1 + G(s)H(s)

. (5.27)

For large H(s), equation 5.27 is approximately equal to 1
G(s) . The transfer

function of a high gain amplifier with negative feedback can be set by selection

of the feedback elements. This is because negative feedback functions similarly

to a restoring force in a stable physical system. If the output of the amplifier is

greater than the level dictated by the feedback elements, the subtraction of the

output at the amplifier’s input will bring the output back down. Similarly, if the

output is too small, a larger signal results from the subtraction operation. An

equilibrium is eventually reached as long as the feedback is subtracted from the

input. What would happen if the feedback was instead added? We would find

that
Vout

Vin
=

H(s)
1 −G(s)H(s)

. (5.28)

In this case, if G(s)H(s) = 1 the gain of the system is infinity. Note that both G and

H are functions of s, a frequency dependent term. This is because in practice, the

transfer function of circuit elements is frequency dependent. Circuit elements

not only alter the voltage level of signals, but also induce a phase shift. If this

phase shift reaches 180◦, the negative feedback becomes positive feedback, and

the system is no longer stable.

Op-amps generally induce a phase lag with an absolute value that increases

from zero with increasing frequency. To ensure stability, the gain of a system

must be less than one for frequencies at which the phase shift is greater than
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180◦. If it is not, the system will amplify the signal and oscillate at this frequency

indefinitely. An amplifier’s phase margin is defined as 180◦ minus the absolute

value of the phase shift imparted to signals at the unity gain frequency in open-

loop. The unity gain frequency is the frequency at which the amplifier’s open-

loop gain has dropped to one. The phase margin is a metric used to gauge

whether an amplifier will be stable in practice. Generally the value should be

kept greater than 45◦.

To ensure stability in some iterations of the amplifier in figure 5.5, pole split-

ting was employed. For a more detailed discussion of poles see [30]. The domi-

nant pole in the first stage of the class AB amplifier discussed here is the output

pole with frequency f = 1/[2π(R1||ro1||ro6)Cgs5]. Note that the gates of transistors

M6 and M7 are at virtual ground, so they do not contribute to this pole. The

dominant pole of the amplifier’s second stage is formed by the load capacitance

and the output impedance, Rout = ro4||ro8. By connecting a capacitor between the

amplifier output and the gate of M8, we accomplish Miller compensation [30].

The Miller effect enhances the impact of this capacitance, and the dominat poles

are shifted. The input pole is brought closer to the origin, while the output pole

is pushed to higher frequencies. The poles are ”split.“

The effect of pole splitting is to bring the unity gain frequency to a lower fre-

quency while pushing the frequency at which feedback signals are phase shifted

by 180◦ to higher frequencies. This reduces the overall amplifier bandwidth but

increases the phase margin to ensure stability.
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5.3 Current injection tests

The three pixel front-ends were fabricated with several means of injecting a test

charge to emulate an input x-ray signal. A PMOS current source in each pixel

provided simple functionality tests. For higher currents and quantitative re-

sults, a copy of each pixel with a probe pad attached to its input was included

in fabrication. Current was injected into pixels through a tungsten needle with

a 10kΩ resistor between the needle and an external current source. The current

was generated and regulated by a Keithley 2400 Sourcemeter. Output signals

were buffered off chip to a DPO7254C Tektronix oscilloscope.

Parasitic capacitance of the needle probe was estimated to be ∼10pF. This es-

timate is based on the change of Vout in the MM-PAD 2.0 pixel during a charge

removal event. The integrating amplifier output voltage jumps during charge

removal to maintain Vre f on the front-end. The jump is smaller with the nee-

dle contacting the front-end because the needle’s parasitic capacitance reduces

the charge transfer efficiency of the integrating amplifier, i.e. charge removal

pulls some charge from the parasitic capacitance rather than the integration ca-

pacitance. This parasitic capacitance is significantly larger than the contribution

expected from a bump bonded sensor, which is closer to 200fF. Based on calcula-

tions of charge transfer efficiency and simulation results, this increased parasitic

capacitance reduces the maximum signals which can be properly integrated as a

result of reducing ∆Q. The capacitance also has a damping effect on pixel front-

end transient signals. Consequently this method is not suitable for testing pixel

performance under pulsed input, but these results do indicate the magnitude of

average input signal rates which can be integrated by the pixels under investi-

gation.
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5.3.1 Probe pad current injection

To evaluate the linearity of integration for each pixel architecture, pixel output

was monitored with a constant current input. The measured output, charge re-

moval frequency, was multiplied by nominal ∆Q values (the quantity of charge

removed per removal execution) to calculate an inferred input current. This in-

ferred input current can then be compared to the actual, known input current.

These values are plotted against each other in figure 5.7. To measure the charge

removal frequency, buffered charge removal control signals were measured on

an oscilloscope, and edge finding algorithms were used to determine the time of

each charge removal cycle. Linear fits to the time of each charge removal versus

the number of charge removals preceding it yielded the charge removal period

as the slope of the fit. From this, frequency and uncertainty in the determina-

tion of the frequency were extracted. Variations in frequency between traces at a

given input current were larger than the uncertainty in the determination of the

frequency in a single trace, but both measures of uncertainty are smaller than

the data points plotted in figure 5.7. Voltages used in the calculation of charge

removal quantities were taken at their nominal values, e.g., V f ront−end was taken

as Vre f , which is set externally. Throughout this section, current is specified in

units of equivalent 8 keV x-rays/s. This is the flux of 8 keV x-rays that, when

absorbed in a reverse biased silicon photo diode, would produce an equivalent

photocurrent.
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Figure 5.7: Inferred input currents based on pixel outputs versus actual input
current. The dotted line represents an ideal response (inferred input equals ac-
tual input). The charge dump oscillator is plotted with circles, the MM-PAD
2.0 with triangles, the externally thesholded capacitor flipping pixel with dia-
monds, and the dynamically thesholded capacitor flipping pixel with squares.
Input and inferred current values are converted to the number of 8 keV x-rays
absorbed in silicon per second which would produce an equivalent photocur-
rent. Inset: Magnification of the same data.
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5.3.2 Performance and analysis

The MM-PAD 2.0 results are shown as triangles in figure 5.7. Good performance

is seen with inputs up to 1.3x1011 8 keV x-rays/s equivalent. The inferred cur-

rent measurement abruptly plateaus, indicating that the pixel oscillator is oper-

ating at its maximum frequency. These values are consistent with simulation.

Deviation from linearity is likely a result of process variation in charge removal

capacitor size and V f ront−end not being held precisely at Vre f . This can be cali-

brated.

The CDO results are shown as circles in figure 5.7. At low input currents,

the inferred input is greater than the actual input, which implies that ∆Q is less

than what is expected based on the value of Vre f . This could be a result of pro-

cess variation in capacitor size. Alternatively, incomplete charge removal may

occur because signals in the ring oscillator propagate quickly compared to time

constants associated with the charge dump process. If the dump is repeatable,

the digital gain of each pixel can be calibrated. However, because the switching

of the CDO is regulated by the threshold of an inverter, the stability of any cali-

bration is threatened over time by radiation damage which can result in device

threshold shifts.

As the input current increases, the CDO’s inferred input current drops be-

low the actual input current. In this regime, above 1011 x-rays/s, the quantity

of charge removed per charge removal execution exceeds the expected value.

A likely cause of this error is a significant rise in the pixel front-end voltage

above Vre f . This would cause more integrated charge to be removed from the

integration node than intended.
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Figure 5.8: Measured comparator delays from the capacitor flipping pixel with
dynamic thresholding are plotted. Measured values assume that all deviations
from linearity in the capacitor flipping pixel’s output are a result of charge inte-
grated during switching delays. Values from simulation are plotted as a dotted
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Capacitor flipping pixel data was taken with both dynamic thresholding and

a fixed, external threshold. These data are plotted in figure 5.7 as squares and di-

amonds, respectively. Some error in externally thresholded operation is a result

of the integrator front-end voltage drifting upwards with higher input currents.

This drift was observed directly in testing. The decrease of inferred current

above 5×1011 8 keV x-rays/s equivalent input in the externally thresholded case

is likely a result of the front-end voltage being pushed outside of the integrating

amplifier’s range of optimal operating conditions.

A clear improvement in performance is seen with the dynamic thresholding

enabled. However, there is still substantial error in the input reconstruction:
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less than 70% of the input is accounted for above 3.5 × 1011 x-rays/s equivalent

input. This error can be explained by noting that the quantity of charge neutral-

ized per capacitor flip, ∆Q, depends on the voltage across the integrator, not just

the front-end voltage as in the other pixel designs. This means that any delay

between when the capacitor should be disconnected and when it actually does

disconnect can introduce error. Specifically, if photocurrent continues to be in-

tegrated during this delay, the output voltage of the integrator will continue to

drop and the charge neutralized will be greater than anticipated.

From these data we can extract the error per capacitor flip. This is the dif-

ference between actual and inferred input currents divided by the frequency of

capacitor flipping. Put another way, this is the charge removed per capacitor

flip beyond what is expected based on the value of the level shift. Simulations

of the comparator employed in this particular pixel front-end show that its fir-

ing delay varies with input falling edge slope, or equivalently in this case, in-

put current. If we assume that all of this deviation from linearity is a result of

photocurrent accumulation during the switching delay, dividing the error per

capacitor flip by input current yields a measurement of this delay. Figure 5.8

plots the measured delays (assuming that all error comes from the delay) on top

of the switching delays from simulation, both as functions of input current.

The measurement appears to follow the simulated values. This highlights

a problem inherent to the capacitor flipping charge removal design. Any de-

lay between when the capacitor should flip and when it actually does creates a

window in which integrated charge will not be accounted for. Some of the cal-

culated error may be due to an offset in the comparator threshold, but potential

for input rate dependent error is ultimately inherent to the design.
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Table 5.1: Pixel Average Power Consumption From Simulation
MM-PAD 2.0 CDO Cap Flip

Active Power
(Integrating
1011 8 keV
x-rays/s)

Analog 146µW 52.7µW 158µW

Digital 79.8µW 130µW 27.2µW

Total 226µW 183µW 185µW

Quiescent
Power

Analog 102µW 52.7µW 194µW

Digital 3.63nW 775nW 0.563nW

Total 102µW 53.5µW 194µW

Power consumption

While maximizing the input range of pixels, it is essential to keep power con-

sumption manageable. Power consumption was measured in simulation for

each pixel substructure and is listed in Table 5.1. Performance of the pixels in

simulation was commensurate with their measured performance. These power

consumption figures have been deemed suitable for scaling to full arrays with

a planned 150µm pixel pitch in a 128x128 pixel array. Based on experience with

previous detectors such as the MM-PAD, the temperature of a single ASIC can

be sufficiently regulated by a water cooled peltier module providing 3-5 W cool-

ing power.

The capacitor flipping pixel exhibits decreased analog power consumption

under high loads. This is because the integrating amplifier in this pixel is a class

AB amplifier, and after triggering a charge removal event, it is not required

to slew back up to achieve its quiescent voltage. Instead, integrated charge is

transferred to the integrator output by the capacitor flipping, and voltage is

restored with minimal current supplied by the amplifier. This is not the case in

the other pixel architectures.
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5.4 Summary

The performance of the pixel substructures discussed above demonstrates that

each is capable of integrating large quantities of photocurrent. The MM-PAD 2.0

exhibits robust performance up to the design goal of 1011 8 keV x-rays/pixel/s

and has demonstrated the viability of adaptive gain in conjunction with charge

removal.

The CDO appears to handle very high input currents better than the other

pixel prototypes, but the CDO also presents a number of development risks.

Since the CDO pixel relies on the threshold voltage of a digital inverter to reg-

ulate the removal of charge, pixel-to-pixel variation and calibration stability are

potential weaknesses of the design. As a practical matter, small, static pixel-to-

pixel variations in charge removal amounts can be accounted for with detector

calibration. A greater concern is calibration stability because radiation exposure

can induce threshold shifts. As a general scheme, the CDO does offer a possible

avenue for the development of high-speed charge removal and in-pixel analog-

to-digital conversion, but the trade-offs are not well known and the degree of

pixel to pixel variations in the CDO have not yet been studied.

The capacitor flipping pixel exhibits a systematic deviation from linearity

which is ultimately undesirable for scientific work, but the effectiveness of the

dynamic thresholding concept is demonstrated. This dynamic adjustment for

deviations of the pixel front-end voltage from Vre f could be utilized in other

ways. For example, in the MM-PAD ∆Q is set by the difference between V f ront−end

and Vlow. Vlow could be dynamically adjusted relative to V f ront−end. In this way, a

constant ∆Q can be enforced in the face of changing front-end voltages.
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CHAPTER 6

THE HIGH DYNAMIC RANGE PIXEL ARRAY DETECTOR

6.1 Introduction

The pixel front-ends described in the previous chapter were developed into

fully operational pixels with mixed analog and digital readout. The pixels were

tiled to form a 16x16 pixel array and fabricated in TSMC 180nm mixed sig-

nal general-purpose II 1P6M salicide technology with 2 fF/µm2 MIM-caps and

thick top metal through Europractice. Support electronics were developed and

a software interface was implemented to control the PAD. A 500µm silicon sen-

sor was bonded to the array. The chip was set on a thermally regulated heat

sink inside a vacuum enclosure with a thin window made of aluminized mylar.

All together, the system is a fully functional x-ray hybrid PAD.

This chapter will describe the system and its functionality. Throughout the

chapter, this system will be referred to as the high dynamic range pixel array

detector (HDR-PAD).1

6.2 System overview

Figure 6.1 is an image of the HDR-PAD detector fully assembled. The primary

components of the detector unit are labeled. The field programmable gate ar-

ray (FPGA) handles all communication between the controlling computer and
1At the time of the writing of this dissertation, all ASIC and PCB schematics, me-

chanical drawings, and FPGA codes relevant to the HDR-PAD are located on the Gruner
group server “People” in directory /us/Detectors-EssentialInformation/HDR-PAD/
HDR-PAD_Sub2/.
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Figure 6.1: Photograph of the high dynamic range pixel array detector (HDR-
PAD) unit with FPGA, vacuum enclosure, and PCB support electronics shown.
Not shown are power supply units, controlling computer, vacuum, water
chiller, and thermoelectric controller. The vacuum housing is roughly four
inches along each edge.

the detector ASIC. The FPGA also programs digital to analog converters on the

support electronics printed circuit board (PCB) and issues all clocking signals.

The FPGA receives data output from the ASIC through the PCB and assembles

the data into packets which are sent to the control computer via Ethernet.

The aluminum block in figure 6.1 is a vacuum clam shell enclosure which

sandwiches a metalized ring on the PCB, making an o-ring vacuum seal. There
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Figure 6.2: LEFT: ZIF socket on the support electronics PCB with thermally reg-
ulated cold finger protruding. The PCB metalization which is sandwiched by
the clam shell assembly is visible. RIGHT: Hybridized module wire bonded to a
ceramic pin grid array (PGA) package, seated in the ZIF socket. The cold finger
makes contact with the backside of the packaging.

is a hole in the center of the PCB through which the thermally regulated

heatsink, connected to the bottom half of the clam shell, protrudes. Figure 6.2

shows the cold finger protruding through the zero insertion force (ZIF) socket

into which the HDR-PAD module is to be seated, along side an image of the

module placed in the socket.

A thermistor is connected to the cold finger which rests on top of a Peltier

thermoelectric (TEC) module. The thermistor feeds back to the TEC controller to

regulate the temperature of the detector module. The clam shell is water cooled

and was constructed by the Gruner group.

The PCB to which the ZIF socket is connected contains several important

circuits. Digital to analog converters (DACs) set voltages which in turn deter-

mine bias voltages and bias currents which are generated and regulated on the

PCB and fed to the ASIC. The ASIC power supplies are fed to the PCB through

BNC connections visible in figure 6.1 but are regulated locally on the PCB. Level
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shifters buffer digital signals from the FPGA to the ASIC, including clock sig-

nals. The PCB also contains analog to digital converters (ADCs) which are con-

trolled by the FPGA. They receive analog data from the ASIC and send digital

conversions of the data to the FPGA to be recorded.

HDR-PAD ASICs were bonded to 500 µm thick silicon photodiodes fabri-

cated by SINTEF (Oslo, Norway). The diodes feature gold pad metalization

over p+ implantation on the ASIC bonding side. The x-ray entrance side is

coated with an aluminum metalization for bias voltage application over n+ im-

plantation. These diodes were originally developed for use with the MM-PAD

detector and more details can be found in Lucas Koerner’s dissertation in which

the same sensors were employed [74]. Because the ASIC studied here is the

product of a multi-project wafer fabrication, only diced ASICs could be pro-

cured and thus wafer-level bump bonding was not possible. To bond the sensor

to the ASIC, silver epoxy bumps were applied via stencil to pixel inputs and

gold studs were applied to pixel connections on the sensor. Flip-chip bonding

of the sensor and ASIC was then possible.2

Figure 6.3 is a photograph of a hybridized HDR-PAD module. The top most

layer is the 500 µm silicon sensor which is bonded pixel-by-pixel to the ASIC.

The ASIC is wire bonded to a ceramic pin grid array (PGA) package. All com-

munications to and from the ASIC are transmitted by the wire bonds. A single

wire bond can be seen connecting directly to the sensor layer. This wire bond

supplies the high voltage necessary to reverse bias the sensor layer. The high

voltage supply is connected through the PCB.

2The bonding procedure outlined here was performed by Jim Clayton of Polymer Assembly
Technology, Inc. (Research Triangle Park, NC). At the time of the writing of this dissertation, all
documentation related to this bump bonding are located on the Gruner group server “Peo-
ple” in directory /us/Detectors-EssentialInformation/HDR-PAD/HDR-PAD_Sub2/
stud_bonding_info/.
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Figure 6.3: Close up image of a HDR-PAD hybrid module wire bonded to the
PGA package. A single wire bond connects to the top surface of the sensor
layer to supply the reverse biasing voltage. The wire bond is made to a thicker
aluminization which is visible along the edge of the sensor.

6.3 HDR-PAD ASIC

The HDR-PAD ASIC contains five pixel front-end variants with identical adap-

tive gain control circuitry, analog readout chains, digital readout chains, and

unified control signals. All pixels image simultaneously. Below the components

which are common to all pixels will be discussed after a brief overview of how

the pixels differ from the pixel front-ends described in Chapter 5.
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6.3.1 Pixel overview

The five pixel variants fabricated on the HDR-PAD ASIC include two MM-PAD

2.0 variants, the charge dump oscillator, the capacitor flipping pixel, and a mod-

ification of the MM-PAD 2.0 pixel which will be referred to as the mixed mode

low drop out pixel (MM-LDO). The two MM-PAD 2.0 variants differ from each

other only in their total low gain integration capacitance. The front-ends of

these pixels have not changed substantially from the test structures included in

the first small scale fabrication described in Chapter 5. The CDO pixel has im-

plemented adaptive gain and the integrating amplifier has been replaced with

the same class AB amplifier as the capacitor flipping pixel uses. The capacitor

flipping pixel has implemented adaptive gain as well, and the level shifter uti-

lized in the dynamic thresholding scheme has been modified for lower power

consumption.

The LDO pixel is a clone of the MM-PAD 2.0 pixel, but the voltage which

determines the amount of charge removed with each charge removal execution

is controlled dynamically relative to the front-end. This dynamically adjusted

level is maintained by a low dropout regulator circuit which is capable of main-

taining a reference voltage over a wide range of input currents. Figure 6.4 is a

block level schematic of the LDO pixel. The level shifter used is the same as the

updated level shifter in the capacitor flipping pixel. The circuitry added to the

MM-PAD 2.0 framework maintains Vlow = V f ront−end − Vlevelshi f t. A current source

is required to bias the regulator and prevent Vlow from dropping to ground. The

transistor driven by the amplifier can be thought of as a variable resistor whose

impedance is adjusted to keep the input terminals of the operational amplifier

equal. The range of possible impedances is very large, and so the voltage on
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this node can be maintained over a wide range of currents.

Figure 6.4: Simplified MM-LDO schematic. The pixel is identical to the MM-
PAD 2.0, but rather than an externally supplied Vlow, the voltage is maintained
by a low dropout regulator circuit. The level of this voltage is set relative to the
front end.

The LDO modification is intended to benefit charge removal during very

high instantaneous flux. When the integrating amplifier is unable to maintain

Vre f on the front-end, the quantity of charge removed from the integration node

per capacitor switching execution, ∆Q = Crem(V f ront−end −Vlow), will vary from the

expected value, ∆Q = Crem(Vre f − Vlow). By setting Vlow relative to the front-end,

the quantity of charge removed should be more consistent: ∆Q = Crem(V f ront−end−

Vlow) = CremVlevelshi f t.

Table 6.1 summarizes the front end specifications of all five pixel variants.
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Table 6.1: Pixel front-end specifications
Pixel Chighgain [fF] Clowgain [fF] Crem [fF] Vre f − Vth [V]

MM-PAD 2.0 v1 40 880 880 0.5

MM-PAD 2.0 v2 40 2630 880 0.5

Charge dump oscillator 77 962 342 0.5

Capacitor flip 40 1000 1000 0.5

MM-LDO 40 880 880 0.5

6.3.2 Data readout

For the purposes of data readout, the chip is divided into four banks: MM-PAD

2.0, CDO, capacitor flipping pixels, and MM-LDO. The signals controlling each

bank are identical. Each bank uses identical but independent readout circuitry.

The banks take frames and read out signals in parallel.

Each pixel reports an analog value and a digital value. The analog value is

the output of the integrator, and the digital value is the output of the in-pixel

counter concatenated with a bit representing the gain state of the pixel. Analog

signals are converted to digital signals off-chip. Digitized analog values and

digital counts are sent to the FPGA, which controls all signaling to and from the

chip. The FPGA communicates with the controlling computer and sends all of

the values readout by the ASIC to the computer via Ethernet. The components

common to all pixels in the HDR-PAD, including the analog and digital readout

chains, are discussed below.

Digital readout chain

The gated oscillator in each pixel, which drives charge removal circuitry, also

connects to the input of an 18 bit in-pixel counter. The counter records the num-
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ber of times charge removal occurs during an exposure. A global digital control

signal, referred to as STOP, prevents the in-pixel counters from incrementing

further and defines the end of an exposure from the perspective of the digital

components. The counter in each pixel is a ripple counter. Sufficient time for

signals to propagate through the counter is provided between the STOP signal

and the LATCH signal. The LATCH signal connects each in-pixel counter to a

column-wide shift register. The gain status bit in each pixel, discussed in the

next section, is also connected to the shift register and is readout in series with

the digital counts. The shift register in each pixel consists of 20 bits, 18 bits to

which the counter output is latched, one bit for the pixel gain status, and an

extra bit which is tied to the digital supply voltage. The pixel shift registers are

daisy-chained together to form one large, 320 bit shift register per column.

Once the digital values have been latched into the shift register, an externally

provided column select signal activates a digital multiplexer at the top of each

bank. The multiplexer connects the output of one shift register to a digital buffer

which transmits signals through a wire bond to a second digital buffer off-chip.

Each bank has its own multiplexer and dedicated chip-edge buffer so that all

four banks can be read out simultaneously. The banks all share the same column

select signal. The FPGA supplies a clock which shifts data out of the selected

column shift registers and to the FPGA for temporary storage. Once data from

all pixels in the selected column in each bank has reached the FPGA, the column

select signals switch and the next column is activated. Once all four columns in

each bank have been clocked out, digital readout is complete and all digital data

has been sent off chip.
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Analog readout chain

All pixels in the HDR-PAD use identical but separate analog readout chains.

The analog output from each pixel integrator is monitored by an in-pixel sam-

ple and hold circuit. The pixel integrating amplifier drives the sample and hold

capacitor which is connected to the integrator output node by a switch. The

switch is controlled by a global digital signal. Opening the sample switch de-

fines the end of an exposure from the perspective of the analog data. This signal

is timed to coincide with the STOP signal which prevents the counter from in-

crementing. The switch is closed during integration such that the voltage on the

capacitor follows the integrator output. Once the switch is opened, the analog

value that will be read out is fixed.

The sample capacitor must be large enough that leakage current will not

have a significant impact on its voltage within the time scale of readout (mi-

croseconds). The sample capacitor must also be small enough to not have a

significant impact on the slew rate of the integrating amplifier. A value of 300 fF

was chosen based on the impact of this capacitive load on the integrating ampli-

fier in simulation. A five transistor differential amplifier connected in follower

configuration reads the sampled analog voltage and serves as the pixel analog

output buffer. The pixel analog output buffer was optimized for slew rate, set-

tling time, and noise. Noise in the analog buffer must be minimized to preserve

analog signal integrity. A five transistor differential amplifier topology pro-

vided the required specifications while minimizing power consumption. This

is a class A topology, so the maximum slew rate in one direction is roughly 10

times the maximum slew rate in the opposite direction. Fixed voltage offsets in

the buffer output are not detrimental to the operation of this amplifier as they
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are trivially accounted for in calibration, so long as they do not push the ana-

log signal outside the functional range of the analog readout chain. Because

each pixel contains a pixel output buffer, power consumption must be kept low.

Here, quiescent current was kept below 5 µA. Rapid settling ensures that read-

out time can be minimized and frame rate maximized. The precise capacitive

load to be driven by this amplifier depends on the full chip layout, but a range

of values were explored to ensure proper performance. The pixel output buffer

is connected to a column bus via a second switch.

Figure 6.5 is a schematic of the analog readout chain from the sample and

hold to the chip edge. The column bus is a low impedance connection between

all pixels in a given column. Each column bus connects to the input of an-

other analog buffer, the column buffer. The column buffer output connects to

an analog multiplexer. The analog readout is orchestrated primarily by on-chip

circuitry which cycles through a fixed pattern of readout signals. After an ex-

ternally supplied initialization pulse, the analog readout signals increment with

each tick of a clock supplied by the FPGA. The signals cycled through are row

select and column select. Again, each bank reads out in parallel. A row select

signal connects all pixels in a given row to their respective column buses (clos-

ing the in-pixel switches connecting the sample and hold buffers to the column

buses), and a column select signal activates each column bus connection to the

multiplexer in succession. Once a row has been cycled through, the row select

increments and the column select signal repeats its cycle.

At the output of the multiplexer, a large class AB analog buffer sends analog

signals off-chip through a wire bond. Several class AB topologies were explored

for use at the chip edge. The capacitive load driven by this buffer is often on the
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Figure 6.5: Simplified ASIC analog readout chain schematic. Sample and hold
circuits in each pixel connect to a column bus through a switch. A row select
signal closes this switch and connects all sample and hold circuits in a given row
to the column bus. A buffer at the edge of the column bus feeds a multiplexer.
A column select signal drives the multiplexer to connect each column buffer to
an edge buffer in sequence. The edge buffer sends analog signals off-ship for
digitization. Each bank posesses its own copy of the depicted circuitry.
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order of picofarads, depending on the wire bond pads, the wire bonds them-

selves, and the PCB-side analog buffers being driven. 5 pF and 20 pF loads

were used in simulation while evaluating various edge buffer designs. Because

the chip only contains one edge buffer per bank, performance is generally val-

ued over power consumption. Here we limited edge buffer quiescent current

to less than 500 µA. The final design had a quiescent current of 86 µA in simu-

lation. A settling time of 50 ns throughout the range of capacitive loads tested

was also required. Stability must be maintained throughout the entire range

of loads. Again, a fixed offset in output voltage does not impact performance

significantly, but noise added to the buffered signal must be minimized. The

chosen topology is based on the AB amplifier used for signal integration in pix-

els, as described in Chapter 5. The amplifier was modified for enhanced output

at the expense of gain. This amplifier provided the necessary slew rate and

output swing.

Once analog signals are buffered off chip, they reach another analog buffer.

This buffer, on the support PCB, is fully differential and feeds its output to an

analog to digital converter (ADC). Each bank has its own off-chip buffer, but

all four of the buffers share a common differential reference voltage. The ADCs

employed are dual channel, so there are two ADCs on the PCB, and each one

is shared by two banks. The analog to digital conversion gain is set by resistors

on the PCB. While the resistors are specified with high tolerance, the exact con-

version gain must be factored into calibrations. Once analog signals have been

digitized, the ADCs are clocked by the FPGA to output the digitized values. The

FPGA collects these data and sends them along with the counter output values

to the controlling computer via Ethernet.
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6.3.3 Adaptive gain implementation

Each pixel’s gain state is controlled by an S-R latch circuit. The comparator

monitoring the integrator output in each pixel controls the sampling of the latch,

and the latch input is always high. When the comparator triggers, the latch

samples the input and sets its state to the input level. In this case, sampling

closes the adaptive gain switches and the pixel enters the low gain state.

In each pixel, the charge removal capacitor switching is controlled by an

AND logic gate. The inputs of the AND gate are the output of the compara-

tor and the output of the adaptive gain latch. A delay element, composed of

an inverter chain, sits in series between the latch output and the AND gate in-

put. This ensures that when adaptive gain is triggered by the comparator for

the first time in an exposure, the charge removal circuitry is not immediately

triggered as well. Rather, the adaptive gain pulls the integrator output above

the comparator threshold voltage before the charge removal is executed. Al-

ternatively, if there is sufficient input to keep the integrator output below the

threshold voltage in low gain, a charge removal event is required and will be

performed shortly after the gain switching.

The latch controlling the adaptive gain is also connected to the 19th bit of

the in-pixel shift register which reads out the in-pixel counter output. Because

knowledge of the adaptive gain state is required to interpret the analog output,

the gain state of each pixel in each exposure must be recorded and readout with

the analog and digital data. By tying the adaptive gain control signal to the shift

register, the gain state of the pixel front-end is readout along with the count of

charge removals and the end of each frame.
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6.3.4 Programmable test sources

For functional testing, each pixel contains a programmable current source. The

current source consists of a PMOS transistor gated by a second PMOS transistor.

The gate voltage of the first transistor is set externally and determines the level

of input to the pixel. The source terminal is connected to the analog supply

voltage. The second transistor’s gate is set by a status bit stored in-pixel. The

status bit is set by a specific bit in the pixel’s shift register. The shift register bit

is written to the in-pixel memory when the digital signal WRITE is high and

the digital column select signal is also high. By reading in specific bit patterns

to the column shift register and activating column select, arbitrarily specified

pixel test sources can be activated.

While reusing the digital readout column select signal for programming in-

pixel current sources is efficient in reducing the number of wire bonds required

to operate the chip, it was found in testing that digital readout could at times

activate in-pixel test sources erroneously. Setting the default level of the WRITE

signal to low has helped to address this issue. However, the architecture should

be updated in future iterations.

To improve the functionality of the current source, the gate voltage of the

PMOS transistor should be set by a current mirror rather than a DAC. That

would permit a more controlled and predictable input to pixels. Additionally,

as will be seen in Chapter 7, the parasitic capacitance on the pixel front end is

quite large. In an effort to minimize this, the transistor gating the current source

should be as small as possible.

141



6.3.5 Radiation hardening

As discussed in Chapter 2, radiation damage in x-ray detectors can lead to long-

term, anomalous biasing of transistors. The transistors which are arguably the

most sensitive to radiation damage are analog switches. For example, radiation

damage in NMOS sample and hold switches leads to leakage current onto or

off of the sample and hold capacitor, and therefore a possible inability to prop-

erly readout analog signals. In an effort to make the HDR-PAD more tolerant

of radiation, enclosed layout transistor topologies were employed in switches

deemed most sensitive to radiation damage.

The HDR-PAD is fabricated in TSMC 180 nm CMOS technology (CM018).

Thin transistor gate oxides in this technology minimize the risk of long term

radiation damage directly beneath transistor gates, but the so-called bird’s beak

is a vulnerable area that persists in these smaller technologies, as discussed in

[75]. Many excellent reviews of enclosed layout transistors exist, such as [76]

and [77]. To summarize, by laying out the transistor gate in a ring the regions

most vulnerable to radiation damage are drastically reduced. Figure 6.6 demon-

strates this layout technique. Note that the gate material can not be confined to

the octagonal shape because layout rules dictate that gate contacts cannot be

made directly above diffusion zones. Labeled in the figure are additional di-

mensions required to parametrize the ELT transistor sizing.

Enclosed layout transistors introduce additional geometric considerations

which result in transistor sizing constraints. For example, the minimum ELT

width is more than four times that of a linear transistor in the same technol-

ogy. A geometric model similar to the one proposed in [76] was used to predict

effective width/length ratios of ELTs in this work. Computed values were com-
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Figure 6.6: Schematic of an enclosed layout transistor (ELT) with source, gate,
and drain terminal connections labeled. Additional dimensions are required to
parametrize the transistor. Rather than simply a length and a width, two lengths
and two widths are required, labeled as L1, L2, a, and b where L’s are lengths.

pared to widths and lengths of ELTs extracted from layout and agreed well.

In this work, NMOS ELTs were used as sample and hold switches, pixel reset

switches, and adaptive gain switches. Each of these switches are sensitive to

leakage current.

These switches are all connected to capacitors which hold analog values,

and are therefore sensitive to charge injection. Charge injection through CMOS

switches, sometimes referred to as clock feed-through, can pose a serious prob-

lem to the fidelity of analog signals. The topic is discussed and modeled in [78–

80]. To summarize, as discussed in Chpater 2, a conductive channel forms be-

neath the gate of a transistor in saturation, as is the case when a CMOS switch is

closed. When the switch is suddenly opened, the charge which formed the chan-

nel must go somewhere. Because the channel to drain and channel to source
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junctions are effectively forward biased, change injection into the substrate is

negligible and channel charge enters the source and drain nodes. Addition-

ally, the gate overlap capacitance with the source and drain form charge pumps

which are activated by switching signals.

If the source or drain are connected to nominally floating nodes, the charge

injection will affect the voltage on these nodes. This is a problems for integrating

detectors. In an effort to minimize the impact of charge injection, the dummy

switch technique was employed as described in [81]. In this scheme, two half-

size dummy switches are placed, one on either side of the active switch. The

dummy switches are the same type as the active switch and are shorted so that

they do not affect conduction in any way. They are driven by the compliment

of the active switching signal. Because the dummy switches are always making

a transition which is opposite the active switch, the charge that they inject is

the opposite of the charge injected by the active switch. Because their gate area

is half that of the active switch, the injected charge will be canceled provided

that the active switch charge injection is split evenly between the source and

drain. Figure 6.7 illustrates the concept of dummy switches for charge injection

compensation.

Note that the use of ELTs necessitates larger gate areas than would otherwise

be dictated by process design rules. This results in larger than average charge

injection, and thus the compensation provided by dummy switches is of greater

importance. The HDR-PAD uses especially large switches to deal with large

signals. How effective the dummy switch compensation is depends on several

factors. The ON impedance of the active switch, along with the rate of active

switch signal change, dictates the degree to which the two sides of the switch
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Figure 6.7: Dummy switch compensation schematic. The active switch is
flanked by two half-sized switches. The half sized switches are shorted so that
they do not control any connections between nodes. They are driven by the
complement of the active switching signal which results in opposite charge in-
jection of the active switch. If the charge injected by the active switch is split
evenly between the nodes it connects, the net charge injection of each node
should be zero.

can equalize their respective voltages through channel conduction. Equal divi-

sion of injected charge between the source and drain is not guaranteed however.

The partitioning of charge between the source and drain of the active switch is

dependent on the relative capacitances of these nodes. If sharper clock edges

are used however, a more equal partitioning of charge can be achieved.

Perhaps the most confounding factor to be dealt with in regard to dummy

switch charge injection compensation in the HDR-PAD is the relative switch-

ing times of the active switch versus the dummy switches. This has a strong

effect on the ability to cancel injected charge, as discussed in [81]. In the HDR-

PAD, digital input signals from off-chip are buffered at the chip edge, and their

complement is generated alongside the buffered signal. This introduces an un-

avoidable delay between the two signals. The effect of charge injection from

switches will be examined more closely in Chapter 7. In future detectors, if

pin count is not problematic, digital signals and their complement can both be

generated off-ship, which would permit tweaking and fine-tuning of delays be-
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tween them. If this is not possible, it may be beneficial to add delay circuitry to

the chip edge digital buffers which would minimize the delay between the two

signals.
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CHAPTER 7

HDR-PAD CHARACTERIZATION

7.1 Introduction

Establishing basic functionality of the system takes considerable effort, but once

established, system performance must be evaluated. Below, the evaluation of

the HDR-PAD is described. Basic operating parameters are extracted from dark

current integration measurements and low flux x-ray exposure. Ultimately the

detector attempts to measure a direct synchrotron x-ray beam to test high flux

signal integration. The HDR-PAD in its present state does not have the sensitiv-

ity to small signals that was originally specified by the design goals, and con-

tributing factors to this are examined. The infrared laser used in the work de-

scribed in Chapter 4 became inoperable shortly after the pulse work concluded,

and so no tests of the HDR-PAD with very high instantaneous flux were per-

formed.

Performance of the MM-PAD 2.0 pixels, the capacitor flipping pixels, and the

MM-LDO pixels will be examined, but the CDO pixel operated inconsistently

and will therefore not be discussed. The analog output of the CDO pixel in any

frame with an integration time longer than ∼1 ms was at or above the highest

voltage measurable by the analog to digital converter. This implies that the

front-end integration node of the pixel reached a low value. This is supported

by the influence that this bank had on adjacent pixel columns. It can be seen

that pixels adjacent to the CDO bank received less signal than other pixels in

the same bank under constant external input. Some parameters of the CDO

pixel could be extracted, but due to lack of performance in most tests, there will
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be no further discussion of the pixel in this chapter.

7.1.1 Dark current integration

To get a picture of the pixels’ overall performance and functionality, dark cur-

rent integration is a useful tool. Recall in Chapter 2, dark current from photo-

diode sensors was discussed. While the signal from the sensing layer itself is

often a nuisance, it can serve as a useful diagnostic. The dark current from the

sensor is a low level, relatively steady input.

By taking a series of frames with linearly increasing integration times, we

can track the pixel output as a function of input. Recall that dark current is ex-

ponential in temperature. Here the detector was held above room temperature

(at 30oC) and the sensor bias was raised to 110V, roughly 30V higher than the

bias required for sensor depletion. These factors increase the total dark current,

and therefore decrease the integration time required to initiate adaptive gain

and charge removal circuits.

Figure 7.1 depicts the output from an MM-PAD 2.0 pixel as a function of

exposure time. Similar plots were obtained for all pixel variants and all look

essentially the same. In these measurements, the CDO pixel output begins at

the expected level, but rises steadily to a maximum output over the course of

500 µs, indicating that the front end is approaching ground.

At first glance, the output plotted in figure 7.1 verifies that the pixel is in-

tegrating photocurrent as expected. The sensor is biased for hole collection, so

the output slews down in time. Once Vout = Vth, roughly 4800 ADU here, the
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Figure 7.1: Average MM-PAD 2.0 pixel output as a function of exposure time.
The pixel input is sensor dark current, which is relatively constant, so exposure
time corresponds linearly to total integrated signal. Basic operation of the pixel
is evident. Positive charge accumulates on the integration node, causing the
integrator output to decrease in voltage. Once Vout = Vth (roughly 4800 ADU)
the adaptive gain is triggered (at 50ms), and the pixel continues to integrate.
When Vout = Vth again, charge removal occurs (first at 650ms).

adaptive gain is triggered. The output jumps back up and the integrator output

is pulled away from the threshold voltage. The pixel continues to integrate dark

current, but the slope of the line has changed indicating that the gain of the pixel

has changed. Subsequent approaches to the threshold voltage by the integrator

output result in output jumps which correspond to charge removal events, as

verified by the pixel digital output.

Dark current is integrated by all pixel simultaneously, and the measurements

provide a broad verification that the pixels are functioning as intended under
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non-strenuous conditions. A lot of information can be pulled from these plots.

The switching point in ADU of each pixel can be extracted from these measure-

ments. Specifically, the ADU values at which adaptive gain/charge removal is

triggered, and the ADU value to which the pixel returns after either of these

events are needed to interpret pixel output. This is a direct measurement of ∆V,

the change in voltage which occurs on the integration node with each charge re-

moval event, which is essential to interpreting high signal measurements. Note

that the value of ∆V is only known in ADU at this point.

Furthermore, the ratio of the slopes of integration in high vs. low gain pro-

vide valuable information as well, assuming that the pixel input remains con-

stant in both states. These slopes allow the low and high gain to be calibrated

relative to eachother. Because the average input current is not a known quantity

in these measurements, the absolute gain can not be reliably pulled from these

frames. What we wish to know is the change in voltage (or ADU) of the output

as a function of input charge. To measure this empirically, we need a known

input. This is provided by x-rays as discussed in the next section.

Interestingly, the gain ratios obtained do not correspond exactly to the ratios

expected based on total integration capacitance. Instead, the ratios consistently

yielded numbers which imply a high gain integration capacitance closer to 60

fF in all pixels, rather than the 40 fF expected. This can be understood as an

effect of parasitic capacitance on the front end decreasing the charge collection

efficiency of the integrating amplifiers, as discussed in Chapter 2. The HDR-

PAD pixels each contain a protection diode which prevent the front end voltage

from rising significantly above the supply voltage. The diodes were intended to

protect pixels from damage that may occur with very high instantaneous flux
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inputs. These diodes are quite large, as the pixels were intended to be tested

with XFEL like inputs. They may be contributing much of this parasitic capac-

itance, along with the detector sensor and bump bonds. Future pixels should

consider utilizing much smaller protection diodes to minimize this effect. If the

detector in question is not intended for use at XFELs, no protection diode may

be required at all.

7.1.2 Photon histograms

Another effective means of assessing a detector’s performance is with low flu-

ence exposure to radiation. After confirming that the HDR-PAD responds to

radiation as expected (initial tests were performed with exposure to americium

radiation), the HDR-PAD was mounted on a beamline in the Gruner lab to be

exposed to silver kα x-rays from a tube source. X-rays passed through a graphite

monochromator to select for the characteristic 22.16 keV x-rays.

Recall that x-rays absorbed on boundaries between pixels can split the

photo-generated charge between pixels. In this calibration, we would like to

deposit a known quantity of signal in a pixel. Even with a monochromated

source, charge sharing needs to be addressed. Here we used a tungsten mask

with an array of 75 µm holes with a 450 µm pitch to shield most pixels from ra-

diation. Pixel pitch on the HDR-PAD is 150 µm, so properly aligning the mask

with the pixels ensures that the nearest neighbors of illuminated pixels receive

no signal. Signal measured in illuminated pixels is generally not shared with

neighbors because the mask was positioned with mask holes centered on pix-

els, as depicted in figure 7.2.
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Figure 7.2: Cartoon depiction of pinhole mask alignment. Pin holes are smaller
than pixels and spaced more than one pixel width apart. Aligning the pinholes
over the center of pixels ensures that the signal from each photon absorbed by
a pixel is not shared with neighboring pixels.

In this configuration, the signal received by illuminated pixels should arrive

in integer multiples of 22.16 keV, and the relative frequency of each multiple

should follow a Poisson distribution. Figure 7.3 is a histogram of 25,000 analog

outputs from a single MM-LDO pixel on the HDR-PAD with 1 ms exposure

times. The data has been reversed such that decreases in output correspond

to increases in ADU. Plotted on top of this histogram is a fit incorporating the

constraints indicated by our knowledge of the system.

The fitted function is the sum of some number of Gaussian functions, in this
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Figure 7.3: Histogram of 25,000 analog outputs from an MM-LDO pixel with
low flux silver kα radiation. Exposure time was 1 ms. The histogram is fit by a
sum of five Gaussian functions. Parameters from the fit describe the pixel’s gain
and noise characteristics. Peaks corresponding to integer numbers of photons
absorbed by the pixel in the integration window are labeled.

case five:

f it = Σ4
n=0x4e−x3

xn
3

n!
exp

(
−(nx2 − ADU + x5)2

2x2
1

)
. (7.1)

Each Gaussian corresponds to an integer number of photons arriving at the

pixel within the integration window. Each Gaussian has the same width, which

corresponds to the variability in the output of the detector. This width is a fit

parameter (x1) that provides a measure of overall noise in the analog data chain.

The Gaussians are evenly spaced. The space between Gaussians is the signal

generated by one 22.16 keV x-ray in ADU. This is a fit parameter (x2) and is an

absolute measure of the pixel’s analog gain. The relative heights of the Gaus-
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sians follow a Poisson distribution described by a fit parameter (x3). This param-

eter describes the average flux incident on the pixel in question. Fit parameter x4

is effectively a normalization corresponding to the number of frames contribut-

ing to the histogram, and x5 is an offset equivalent to background subtraction.

In this case five Gaussian functions were fit to the histogram because there

were not an appreciable number of occurrences of more than four photons inci-

dent on the pixel within the integration window, but in higher flux data sets the

sum extends to higher numbers. The first peak in the histogram corresponds

to zero integrated photons. The width of this Gaussian is roughly equal to the

others, confirming that the vast majority of analog signal variation originates in

the detector itself.

Photon histograms were obtained for pixels in all banks and were analyzed

in the manner described above. Table 7.1 summarizes the pixel data extracted

from photon histograms. The ADU/keV figure is the total effective gain of the

analog signal chain when the pixel is in high gain mode, including effects from

the analog buffer chain and the off-chip ADC. This number is the absolute mea-

surement of pixel gain required to utilize the slope ratio discussed in the previ-

ous section. For example, in high gain the MM-PAD 2.0 pixel out changes by

13.29 ADU per keV of signal incident, so an 8 keV x-ray will change the output

by 106.32 ADU on average. The ratio of high gain to low gain constant cur-

rent integration slopes from the previous section is 15.1, which implies that an

8 keV x-ray will change the output of the MM-LDO pixel output by ∼7 ADU on

average in low gain.

σ f it is the fit parameter x1 and characterizes the variability of the analog out-

put. The number is listed in ADU and keV (utilizing the extracted gain). The
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Table 7.1: Parameters extracted from photon histograms
Pixel Gain [ADU/keV] σ f it [ADU] σ f it [keV]

MM-PAD 2.0 13.05 72.0 5.51

Capacitor flip 7.67 56.8 7.40

MM-LDO 13.29 72.9 5.48

σ f it in keV indicates that the signal to noise ratio of a single 8 keV x-ray is not

much larger than one. While measurements can still be made with 8 keV x-rays,

the rate of false positive events in the single photon signal regime is greater than

desired, 1.46 in the case of the MM-LDO pixels. For the sake of comparison, the

original MM-PAD detector achieves a signal to noise ratio of ∼6 for 8 keV x-ray

inputs, which corresponds to a false positive count rate of less than one in one

hundred million. The noise of the HDR-PAD has been improved since these

measurements were taken, but the design specifications were not met in this

regard. The final section of this chapter is dedicated to exploring this issue.

As an additional verification of pixel functionality, figure 7.4 compiles pho-

ton histograms from a set of MM-LDO pixels with progressively higher flux. In-

dividual photon resolution at 22.16 keV is maintained up to the point at which

the adaptive gain circuitry activates. The full well in high gain, or the quantity

of charge required to initiate the gain switch, matches the expected value.

7.1.3 High flux measurements

Having verified basic functionality of the detector and extracted parameters

from the dark current integration and low flux x-ray integration, The HDR-PAD

must be tested with a high flux input. Working with Jacob Ruff from CHESS
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Figure 7.4: Photon histograms of MM-LDO pixels with progressively higher
flux. Photon peaks are fit from zero photons up to twenty-one photons. A
final peak was added where a twenty-second peak would sit. This signal level
triggers the adaptive gain circuitry and brings the pixel integrator output away
from the threshold voltage.

at Cornell University, the HDR-PAD was mounted in experimental hutch A2.

Beam energy was set to 9.520 keV. The energy was chosen because it provides

the highest monochromatic flux from the A2 undulator amongst energies be-

low 12 keV. Higher energies could have provided greater total flux, but the total

dose absorbed by the HDR-PAD silicon sensor would have been lower due to

the efficiency of silicon at these energies. Beam size was set by beam defining

slits to roughly 250 µm by 1500 µm. Total flux was ∼7x1011 x-rays/s as measured
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by ion chambers between the beam defining slits and the detector.

Figure 7.5 is a schematic of the experimental layout. IC1 is an ion chamber

which monitors the full flux entering the hutch, after the beam defining slits.

IC1 feeds back to the silicon monochromator which sets the beam energy. The

monochromator adjusts its alignment to maintain constant flux as CHESS beam

current changes. A variable aluminum attenuator reduces beam intensity. The

attenuator is an aluminum disk with blind slots of various depths bored around

the circumference. One slot is a hole cut completely through the disk to permit

the full beam to pass with no attenuation. The attenuator is on a rotation stage

to allow selection of attenuator thickness. A second ion chamber (IC2) monitors

the flux of the attenuated beam. The ion chambers are filled with nitrogen and

have kapton windows. Finally, the HDR-PAD is mounted on translation stages

in-line with the beam. The translation stages allow positioning of the beam onto

different sets of pixels. The rectangular beam was oriented with the long edge

along pixel banks. Figure 7.6 is one frame with no attenuation. The full CHESS

beam is being integrated for 1 ms. The scale is logarithmic.

Exposure times throughout the measurements ranged between 10 µs and 10

ms. To ensure activation of the charge removal circuitry at a wide range of beam

intensities while minimizing effects of dark current, an exposure time of 1 ms

was used in most of the data sets described below. Data sets were acquired

as follows: Frames were taken at low flux (high attenuation setting) to align

the beam with a desired set of pixels. Once the beam was aligned, the HDR-

PAD was set to frame continuously for several minutes. While the detector

was taking frames, the attenuator was set to some value, the hutch shutter was

opened, and after a delay, the hutch shutter was closed, and the attenuation
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Figure 7.5: CHESS A2 beamline schematic. Beam enters the hutch through beam
defining slits and enters the first ion chamber (IC1) which measures the full
beam flux. A variable attenuator rotates to place aluminum of various thick-
nesses in the path of the beam. A second ion chamber (IC2) measures the atten-
uated flux. The attenuated beam strikes the HDR-PAD directly.

Figure 7.6: Sample image with 1 ms exposure to the full A2 beam. The scale is
logarithmic.
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setting was incremented. In this way, dark frames are acquired between each

set of exposures.

Each bank was subjected to the full range of x-ray flux available, more than

five orders of magnitude range. Flux on the peak pixel was calculated. Flux on

the entire bank was also calculated. The fraction of total signal measured by the

detector versus the signal of the brightest pixel was computed and used to scale

the independently measured total attenuated flux incident on the chip. Plotted

below are the signals as measured by the HDR-PAD pixels versus the signal as

measured by the ion chambers, scaled by the calculated fraction. The error bars

are the standard deviation of measurments at each flux based on the frames

aquired (generally about 50 frames per data point). An orange dashed line is

included for comparison which is the flux as measures by the ion chambers

versus itself, a line of slope one, representing perfect performance.

Figure 7.7: Signal measured by the MM-PAD 2.0 pixel with a total integration
capacitance of 880 fF versus the signal measured by ion chambers. The dashed
line represents perfect performance for comparison.
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Figure 7.7 plots the flux measured by the MM-PAD 2.0 v1 pixel (v1 corre-

sponds to Cint = 880 fF). The pixel performs extremely well, and little deviation

from the expected behavior is observed.

Figure 7.8: Signal measured by the MM-PAD 2.0 pixel with a total integration
capacitance of 2630 fF versus the signal measured by ion chambers. The dashed
line represents perfect performance for comparison.

Figure 7.8 plots the MM-PAD 2.0 v2 pixel measurements (v2 corresponds to

Cint = 2630 fF). Here the measurements are systematically over estimating the

incident flux. The most likely explanation is a slight miscalibration. The ADU to

keV ratio used to interpret these data was extracted from the dark current inte-

gration and photon histogram measurements discussed above. Because the de-

tector response is so linear, it seems unlikely that the pixels are malfunctioning.

The value which represents the number of x-rays removed from the integration

node with each capacitor switching event may be less than the original calibra-

tion implied. A more careful calibration of the pixel response would most likely

yield better agreement between the measured input and the actual input.
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Figure 7.9: Signal measured by the capacitor flipping pixel with an externally
supplied threshold voltage versus the signal measured by ion chambers. The
dashed line represents perfect performance for comparison.

Figure 7.9 plots the response of the capacitor flipping pixel with an externally

supplied threshold voltage. It also exhibits very linear performance. Measured

signal at the high flux end begins to dip. It is unclear whether this is a delay

induced error, as was explored in Chapter 5, or simply a slight miscalibration of

the pixel response. In either case, the pixel would benefit from further calibra-

tion, but performs well within the tested rage of flux.

Figure 7.10 plots the capacitor flipping pixel response with dynamic thresh-

olding activated. Here a clear drop off in response is seen, and the performance

is actually worse than in the externally thresholded case. The reason for this is

most likely poor performance of the level shifting circuit. Even in low fluence

testing, the circuit exhibited a tendency to switch sporadically, possibly due to

a sensitivity to transients. The level shifter may require supplementary reset

signals for optimal performance, but these have not been fully implemented.
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Figure 7.10: Signal measured by the capacitor flipping pixel with dynamic
thresholding enabled versus the signal measured by ion chambers. The dashed
line represents perfect performance for comparison.

Figure 7.11: Signal measured by the MM-LDO pixel versus the signal measured
by ion chambers. The dashed line represents perfect performance for compari-
son.
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Finally, Figure 7.11 plots the response of the LDO pixel. While the response

does appear linear, the slope of the measured input is consistently less than one.

This is most likely due to an inadequate calibration of the low gain ADU to keV

ratio.

Note that while the input to the pixels should be fairly constant, there are

variations in beam flux throughout the course of measurement. Some of the

uncertainty in the measured inputs can be attributed to these fluctuations. The

beam intensity was stabilized by ion chamber feedback on the monochroma-

tor, but ion chamber measurements bring their own uncertainties, and feedback

systems have characteristic time scales over which they operate. Overall, the

system would benefit from further calibration and refinement of data interpre-

tation. The parameters used to interpret these data were obtained empirically,

but some refinement of calibration data could yield better results. Even so, the

detector responds well to a very wide range of signals, through the full five or-

ders of magnitude tested, up to 1010 9.52 keV x-rays per pixel per second. The

MM-PAD 2.0 pixel architecture demonstrates the most reliable performance.

7.2 Small signal resolution

The photon histogram data indicated that the signal to noise ratio of HDR-PAD

pixels with signals generated by single 8 keV x-rays is unsatisfactory. In contrast

to the well defined, separate peaks in figure 7.3, an analogous plot with 8 keV

x-rays would feature Gaussian curves which are only distinguishably separate

at their peaks, if at all. As discussed in Chapter 2, noise sources in detectors are

abundant, but we can perform tests to identify the dominant sources.

163



Figure 7.12: Pixel bank average versus pixel bank average. Each point repre-
sents one frame. Bank averages from within the same frame are compared.
Correlation coefficient is computed.

7.2.1 Global noise sources

To begin, some noise sources are global, while others are local to pixels. Another

way to say this is that some portion of the variability in pixel output is common

to all pixels, while another portion differs from pixel to pixel. Figure 7.12 is a

simple illustration of this phenomenon. Each point in the plots represents one

frame. The horizontal position is dictated by the average analog output value of

one bank of pixels, and the vertical position is the average analog output value

of another bank of pixels. Exposure time was 10 µs, kept low to minimize the

effect of dark current on the measurement.

A clear correlation is seen between banks. The MM-PAD 2.0 bank and the

MM-LDO bank are strongly correlated. This is to be expected because the pixel

architectures are nearly identical, and so global noise sources are likely to affect

these pixels in a similar way. Global noise sources include power supply and

bias fluctuations, as well as pick up from external sources, among others. These

will be investigated in turn. First we might ask what fraction of the pixel noise
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can be attributed to global fluctuations?

If pixel noise were entirely independent between pixels, i.e., there are no

global fluctuations, an average of many pixels should vary less from frame to

frame than a single pixel output varies between frames. More rigorously, the

variance of the mean of a set of pixels in time is

Var
(
ΣN

i=1
xi

N

)
=

1
N2

[
ΣN

i=1Var (xi) + ΣN
i, jCov

(
xi, x j

)]
(7.2)

Where i and j index the pixels in the set to be averaged, Var is the variance of the

values over time, and Cov is the covariance of the values over time. Note that

the covariance of a variable with itself is equal to its variance. If the pixels lack

any correlation, i.e., their covariance is zero, the variance of the mean of pixels

should equal the sum of the individual variances divided by N2, or equivalently

the mean of the variances divided by N.

Figure 7.13 looks at this comparison. Standard deviations are plotted rather

than the variances in equation 7.2 to make a clearer connection to equivalent

noise charge. A set of 10,000 frames with 10 µs exposure time were acquired.

In each frame, N MM-PAD 2.0 pixels were selected and averaged together. The

standard deviation of the average value throughout the data set is plotted with

a blue dotted line. The variance of the output of each of the individual pixels

in the data set is also computed, and the variances are averaged and divided by

N. This is repeated 5000 times for each N and the square root of overall average

results is plotted. To reiterate, this plot compares the standard deviation of an

average:

dotted =

√
Var

(
ΣN

i=1
xi

N

)
, (7.3)

versus the square root of the average of individual variances divided by N:

dashed =

√
1

N2 ΣN
i=1Var (xi). (7.4)
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Figure 7.13: The standard deviation of N pixels averaged together is plotted as
a blue dotted line. The average standard deviation of N pixels divided by N is
plotted as an orange dashed line. If there were no global noise, the standard de-
viation of the average value of many pixels would approach zero as N increases.

For independent random variables xi, every term in the covariance sum is

zero. The orange dashed line approaches zero as 1
√

N
while the blue dotted line

approaches the standard deviation of the global noise.

Where does this global noise come from? To simultaneously assess the vari-

ability of power supplies and bias voltages along with analog to digital con-

version noise, the chip was removed from the ZIF socket and power supplies

and bias voltages were connected directly to analog output channels in the ZIF

socket, which feed to the ADC inputs. For supply voltages outside the nor-

mal range of ADC operation, the supply was connected to the output channel

through a resistive bridge consisting of two 1000 Ω resistors to ground. This
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places a load on the supplies which is within their normal operating range. By

sending frame commands to the FPGA while the PCB is wired in this config-

uration, the ADCs will continuously digitize the voltage at their input. This

provides a measure of both fluctuations in supply/bias voltages and variability

in analog to digital conversion.

If the result of this test were very high variability, further steps would be re-

quired to disentangle the source of the variance. However, what was discovered

was a clear, high frequency fluctuation in the supply voltages, but not the bias

voltages. This indicates that there is noise on the power supply lines, but the

ADCs are operating reasonably well. It was discovered that the capacitors con-

nected to the power regulators on the PCB had a lower equivalent series resis-

tance than what is required by the regulators for stability. After replacing these

capacitors, the digital supply line was the only noisy line remaining. Replacing

the FPGA switching power supply with a linear power supply unit aided the

reduction of this variability drastically. Table 7.2 lists the standard deviation of

power supply and bias voltage analog to digital conversion values after these

changes. These measurements suggest the degree to which power supply fluc-

tuations might affect the variability of frame data from the ASIC, though the

actual impact is most likely smaller than the figures themselves.

Note that in this configuration, the power supplies are not loaded dynam-

ically, as they would be in actual operation. As a result, power supply droop

resulting from changing current draw by the ASIC can not be diagnosed in this

way.

To assess whether noise on the digital line is originating on the supply side

or ground side, the measurements above were repeated with the analog power
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Table 7.2: Power supply variability
Supply σ [ADU]

MM-PAD 2.0 Vre f 2.21

Charge dump oscillator Vre f 1.98

Capacitor flip Vre f 1.25

MM-LDO Vre f 2.69

Analog supply voltage 1.50

Digital supply voltage 12.89

supply connected through the resistive divider to digital ground and with the

digital power supply connected to analog ground. This crossing yielded stan-

dard deviations on both supplies of ∼6.5 ADU, suggesting that the problem is

not solely on either the supply or ground side. Rather, it is more likely that a

digital component on the FPGA or PCB is generating fluctuations on both.

Finally, noise contributions of the Peltier thermoelectric used to regulate the

temperature of the ASIC were assessed by imaging at room temperature with

and without the Peltier turned on. Significant pickup was measured with the

Peltier activated, though the noise was reasonably well addressed with a de-

bounce algorithm.

In general, global noise can be mitigated with a so called debounce algo-

rithm. By averaging the value of pixels which recieve no external signal in a

given frame, an estimate of the global noise is obtained. This value can then be

subtracted from all pixels to remove the global component of noise on a frame-

by-frame basis. While this technique was employed to address the remaining

global noise in the HDR-PAD, its effectiveness was limited due to the variety of

pixels in the pixel array. In any given frame, the number of pixels of a specific

architecture which receive no signal is small, and so the estimation of the global
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noise is poor.

7.2.2 Local noise

After accounting for chip-wide noise sources, which primarily originate off-chip

and can therefore be addressed as discussed in section 7.2.1, the noise level of

the pixels still does not provide a satisfactory signal to noise ratio for a single

8 keV x-ray. Several imaging modes can be utilized to locate the source of the

signal variability. For example, the pixel can be read out continuously while

the pixel reset signal is held high. In reference to figure 6.4, the switch labeled

RST, which connects the input and output of the integrating amplifier, remains

closed throughout the entirety of framing rather than being opened to permit

the accumulation of charge by the pixel. In this configuration, the integrating

amplifier output follows Vre f . This was verified by sweeping the value of Vre f

and confirming that the output changed correspondingly.

With the reset signal held high, noise contributions from before the sample

and hold amplifier are minimized. Other than noise on Vre f itself, which was

shown above to be quite low, the amplifier output should be relatively constant.

Pixel output standard deviation in this configuration are displayed in table 7.3.

These figures are debounced bank averages.

Table 7.3: Pixel noise in reset
Pixel σ [ADU] σ [keV]

MM-PAD 2.0 12.11 0.93

Charge dump oscillator 22.74 2.81

Capacitor flip 13.02 1.70

MM-LDO 11.72 0.88
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Table 7.4: Pixel noise in low gain
Pixel Clow [fF] σraw [ADU] σdebounced [ADU] σdebounced [keV]

MM-PAD 2.0 v1 880 15.20 13.25 22.35

MM-PAD 2.0 v2 2630 15.47 13.38 67.45

CDO 962 17.29 15.70 24.31

Capacitor flip 1000 29.43 14.87 48.48

MM-LDO 880 16.48 14.12 23.38

This indicates that noise contributions from the analog readout chain noise

are not dominating the pixel output noise. These values are sufficiently low

to obtain the desired signal to noise ratio in framing. Evidently the dominant

noise sources are on the front end. Another imaging mode consists of framing

with pixel gain starting low and staying low. I.e. the adaptive gain is forced

to activate before framing has begun. By increasing the integration capacitance,

we may be able to distinguish between a charge injection noise and a voltage

noise. A voltage noise on the front end would be seen as a larger equivalent

noise charge when integration capacitance is increased, while a charge injection

noise should present roughly the same equivalent noise charge in high and low

gain. Table 7.4 summarizes the findings. The table lists the standard deviations

of banks before and after debouncing. Each half of the MM-PAD 2.0 bank is

treated separately because their total low gain capacitances are different.

Here we see that the noise in low gain is very similar to that of the pixel in

reset. By comparison, the noise values extracted from the photon histograms,

listed in table 7.1, are significantly higher in ADU. This suggests that the pixel

noise is dominated by some form of charge injection which is particularly prob-

lematic in high gain mode. There is of course some voltage noise as well, as

evidenced by the higher equivalent noise change in low gain, but the drastically
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reduced noise in terms of ADU imply that charge injection dominates. Rela-

tively large switches were employed in the layout of the HDR-PAD and are a

likely candidate for the source of charge injection noise. A rough calculation of

the charge that may be injected by such switches follows.

The reset switch in the MM-PAD 2.0 has a width of 6.0 µm, a length of 0.36

µm, and a multiplicity of two. It is flanked by two dummy switches as described

in a previous section, each with the same width and length but multiplicity of

one. Based on TSMC 180 nm process parameters, the gate oxide capacitance of

the reset switch is Cox =8.68 fF/µm2. The total gate capacitance of the active

reset switch is then

Cgate = 2wlCox. (7.5)

The reset signal swings from 1.8 V to 0 V. If we make the simplifying assump-

tions that the reset signal swing is fast enough to split injected charge evenly

between the front end and the analog output node, and further assume that

variations in the quantity of charge injected follows Poisson statistics, the stan-

dard deviation of the charge injected to the front end by the reset switch is

σQin j =
√

wlCox∆V = 649e− (7.6)

in number of electrons. The dummy switch on the front end will inject a quan-

tity of charge from a distribution with the same standard deviation, so the total

uncertainty in the quantity of charge injected onto the front end, when these

quantities combine, is the standard deviation in equation 7.6 multiplied by
√

2

because the uncertainties add in quadrature. The total uncertainty due to this

injected charge is equivalent to ∼3.3 keV signal charge. Note that gate-source

and gate-drain capacitances have been neglected.

The calculation above makes several simplifying assumptions, but serves
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to illustrate that charge injection from the large switches used to reset the pix-

els could plausibly be the dominant noise source in HDR-PAD measurements.

Large reset switches were employed in the HDR-PAD for handling large signals

and resetting the pixels quickly. In simulation, the dummy switches canceled

out injected charge very well. It may be that the clocking patterns used in the

HDR-PAD can be refined to minimize the charge injection problem, and the

switches will actually work to within the design specification. However, more

testing and FPGA reprogramming is required.

The figures in table 7.4 also provide an opportunity to verify that the un-

certainty of signals which are just large enough to trigger adaptive gain will be

measurable with the desired signal to noise ratio. As verified in the high gain

photon histograms, roughly 49 8 keV x-rays are sufficient to trigger the MM-

PAD 2.0 adaptive gain. Poisson statistics dictate that a measured signal of 49 8

keV x-rays has an inherent uncertainty of ±7 x-rays. The noise figures in table

7.4 suggest that the uncertainty of a signal in low gain is below this level in all

pixels except the MM-PAD 2.0 pixels with a low gain integration capacitance

of 2630 fF. If the uncertainty due to the detector is below the uncertainty due

to shot noise, the total uncertainty of the measurement is near the experimental

minimum, the square root of the measured signal, because the uncertainties add

in quadrature. From this we can conclude that a low gain capacitance of 2630 fF

is too low with a high gain integration capacitance of 40 fF. To employ this low

gain capacitance and still resolve intermediate signals, a third gain stage would

be required. However, the low gain capacitances of 880 fF and 1000 fF are small

enough to provide Poisson limited measurements of intermediate signals.
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CHAPTER 8

CONCLUSIONS

Throughout the course of this dissertation, the need for high dynamic range

x-ray detectors at high brightness light sources and the case for developing inte-

grating detectors to meet these needs was demonstrated. Integrating detectors

are possibly the only detector architecture which can adequately utilize the ca-

pabilities of x-ray free electron lasers, and enhanced flux at third generation

synchrotron sources cannot be fully utilized with other technologies, such as

photon counting detectors.

The use of a high dynamic range integrating detector, the MM-PAD, in

pulsed magnetic field studies at the Advanced Photon Source at Argonne Na-

tional Lab serves to illustrate the importance of further developing this technol-

ogy. The studies of Uranium dioxide are on-going, and evidence of its piezo-

magnetic properties on the atomic scale are being dissected. Further studies

are required to draw firm conclusions, but the addition of magnetic field direc-

tion switching to these studies promises to shed light on the question of how

piezomagnetism might arise from unit cell distortions.

The plasma effect in silicon diodes was investigated by simulating the

electron-hole pair clouds generated by XFEL-like scatter with a pulse infrared

laser. The results of these studies suggest that charge accumulation in detector

pixels stretches to longer time scales than expected due to plasma effects in high

density electron-hole pair clouds created in the sensors. These time scales can

reach over 1 µs, which is sufficient time for charge removal circuits to provide a

meaningful increase to the achievable dynamic range of an integrating pixel.
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An initial small scale fabrication of pixel prototype front-ends demonstrated

the potential benefit of combining adaptive gain with charge removal tech-

niques. These integrating frameworks were evaluated with direct current in-

jection, and results suggest that they may be capable of integrating continuous

x-ray fluxes greater than 1011 8 keV x-rays/pixel/s. The pixel front-ends were

developed into fully functional pixels with mixed analog and digital readout. A

composite detector consisting of five different pixel architectures was designed

which would provide a platform for imaging with and evaluating the perfor-

mance of all pixel architectures simultaneously.

Fabrication of a 16x16 pixel hybrid detector, development of support hard-

ware and electronics, and refinement of operation resulted in a fully functional

hybrix pixel array detector utilizing the prototype front-ends and demonstrated

the functionality of the adaptive gain-charge removal combination in measur-

ing high flux x-ray radiation. This culminated in successful measurements of an

unattenuated x-ray beam at CHESS with a total flux greater than 1011 9.52 keV

x-rays/s spread over roughly twenty pixels.

By comparison, the measurements taken at CHESS represent a two order

of magnitude improvement over the original MM-PAD in sustained integrated

flux. The HDR-PAD may be able to integrate even higher fluxes, but this was

the highest flux available for testing in this experiment. Detectors such as the

AGIPD can integrate an average flux of this magnitude, but will saturate af-

ter roughly a microsecond. Here the HDR-PAD integrates 1000 times longer

than that and does not come close to saturation. Because the CHESS beam is

pulsed, the instantaneous flux on the target pixels is substantially higher than

1010 9.52 keV x-rays/pixel/s. Photon counting detectors such as the PILATUS3,
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even with re-triggering circuitry to account for pileup, would experience signif-

icant non-linearities when measuring a beam with one one-thousandth of the

intensity measured here. The architectures tested in the HDR-PAD provide a

solid foundation on which to build future detectors, but some lessons should be

carried forward.

One significant shortcoming of the HDR-PAD is lack of small signal resolu-

tion. Specifically, the HDR-PAD does not achieve the target signal to noise ratio

for a signal of one 8 keV x-ray. The most likely cause of this is charge injection

due to large reset switches on the pixel front-ends. While large switches may be

required for rapid reset in high frame rate experiments, smaller switches would

likely suffice. Dummy switches were employed in the HDR-PAD to reduce the

magnitude of charge injection, and while seem to be achieving this goal, they

also add to the total variability of the detector output. With smaller switches,

the magnitude of charge injection would also be smaller and dummy switch

charge injection compensation might not be needed at all.

Dummy switches might still be employed if their timing can be controlled

independently of the active switches. In future detectors, these signals should

be controlled separately to permit fine-tuning of their relative behavior. Alter-

natively, greater care should be taken to match delays on each signal induced

by chip-edge buffers.

The test current source in each pixel of the HDR-PAD was invaluable in de-

bugging the detector operation. Bit shifts and shuffling of data were identified

with their use, and they should absolutely be included in future detectors. How-

ever, the erratic turning-on of the test source gating did prove to be a nuisance.

This behavior can be rectified by the addition of dedicated control signals for
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writing to the in-pixel memory bits. Additionally, the current test source out-

put level should be controlled by a current mirror in future chips, rather than

an externally defined voltage. While the precision of a test source feeding the

integration node of an integrating pixel will never be ideal, this would permit

more linear changes in input strength, and would make performing some tests

much easier with little downside.

The pixel front-end parasitic capacitance in the HDR-PAD was larger than

expected. The current test source is one contributing factor to this capacitance,

but another source of this which can be addressed is the protection diode which

connects to the supply voltage included on the front-end of each pixel. While

some measure of protection should be included in a detector intended for use

at XFELs, the smallest possible diode should be used. The oversized switches

of the HDR-PAD are certainly another contributor to the parasitic capacitance

on the front-end node. Reducing this capacitance will improve the small signal

resolution of the pixels provided that charge injection is not the dominant noise

source.

Despite these shortcomings, the HDR-PAD represents a step forward in the

evolution of high dynamic range integrating detectors. The technology is ver-

satile, and a version of the detector presented here is being adapted for use with

electron microscopes, where the high dynamic range combined with area reso-

lution will continue to expand experimental opportunities.
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APPENDIX A

LASER PULSE MEASUREMENT SCHEMATICS

Appendix A contains schematics for the printed circuit boards used to measure

infrared laser pulses as discussed in Chapter 4. Figure A.1 is the layout of the

printed circuit board to which the custom diode was connected. All PCBs in

this appendix were designed by Dr. Julian Becker during his time in the Gruner

Group at Cornell University.

Figure A.1: Layout of sample PCB used in pulsed infrared laser studies dis-
cussed in Chapter 4. The circle labeled HV on the right side of the board is
punched through to permit laser pulses to strike the diode, which is connected
to the ring which supplies the bias voltage. Immediately to the left of this ring
are wire bonding pads which are connected directly to pixels on the diode. Sig-
nals are routed through a connector to the circuitry for which schematics are
provided on subsequent pages.
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