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Abstract. New sources and detectors are allowing scientists to look at matter with finer spatial
and temporal resolutions. These experiments can produce data that are a series of severely
Poisson limited snap-shots of randomly oriented samples. An extreme case of this is destructive
imaging of single particles with an x-ray free-electron laser – many frames are needed for a
reconstruction, but there is no a priori information associated with the frames about particle
orientation. We use Cornell’s Pixel Array Detectors (PADs) to examine the practical limits of
an expectation maximization (EM) algorithm designed to deal with extremely low-fluence data,
having just a few photons per frame. We demonstrate image reconstruction of a high-contrast
sample using hundreds of thousands of randomly oriented frames with an average x-ray photon
occupancy as low as 2.5 photons per frame. Practical aspects of reducing low-fluence data, such
as thresholding and noise limits, will be discussed for high- and low-contrast samples; and data
collected in the presence of significant background signal.

1. Introduction
New light sources like x-ray free electron lasers (XFELs) that have fast, focused x-rays, make
probing of matter on extremely short time scales (femtoseconds) with extremely small samples
(single macromolecules) possible. The extreme of this is single molecule imaging. [1] When
the scientific potential of these sources is maximized, the nature of the data collected can be
categorically different than data collected with macroscopic samples on long time scales. There
are many reasons for this, but two stand out: 1) The cross-sections of small samples is small.
This means that even with intense, focused x-rays, the number of photons per snap-shot is
limited. 2) The time scales important for small samples are extremely short. This means,
generally, that fast snap-shots are used for gathering orientation specific information and that
successive snapshots are uncorrelated. In the case of single molecules, the sample is destroyed,
but one could imagine other situations involving a non-destructive measurement of a sample in
a random, unknown orientation.

When using imaging detectors, like pixel array detectors (PADs), the type of information
generated is a collection of low-information images. Dealing with this data requires careful
treatment. Since the frames of data are “low-information”, an enormous number of frames
(hundreds of thousands or millions) are necessary to perform a successful measurement. The
measurement-significant signal must be extracted from each of these frames and with many
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frames, measurements become more sensitive to characteristics of the detector like the signal-
to-noise ratio, gain variation, and small offsets in the zero level of charge integrating detectors.

After the per-frame data are reduced, it must be used to reconstruct orientation specific
information. Different methods have been proposed for doing this in cases where many identical
samples are examined, but each in an unknown orientation. [2, 3] When dealing with data
from frames that have cross-correlations of approximately zero, it has been demonstrated that
the recovery of orientation specific information is possible using an expectation maximization
algorithm. [4]

2. Collecting and reducing data
Charge integrating detectors are well-suited for high-speed experiments when the instantaneous
arrival rate of photons per pixel exceeds the count rates achievable with photon counting
detectors. Areas of the detector where the average fluence is low benefit from signal
discrimination after charge integration to distinguish photon detection events from non-events
(i.e. offsets from the average zero-level that are the result of noise in the signal measurement or
errors in the zero-level). To do this, the signal-to-noise ratio of the detector must be sufficiently
high so as to let the average fluence of data frames be distinguished with high fidelity. [5]
The threshold level used must take into account the detector gain, the signal-to-noise ratio,
systematic offsets in detector dark levels, and the signal level (photons per pixel per frame).

Integration detectors that have low photon-equivalent noise for the x-ray energy of interest can
be used to discriminate single photon events simply by applying a threshold level to the detector
output at the appropriate level. If the anticipated fluence is low, so that double photon events
are exceedingly rare, then the detector output over many frames (i.e. a functional histogram)
can be represented as two Gaussians of equal width, one about the zero-level and one about
the single photon level. Integrating the the curves from the threshold value to infinity gives
the relative contributions of non-events and photon events to the detector output. Increasing
the threshold monotonically increases the certainty that a photon was detected, but decreases
efficiency. In the context retrieving of spatial orientation, loss of pixel detection efficiency means
a reduction in the number of photons per frame. Lowering the threshold increases effective pixel
efficiency, but also effectively lowers contrast – making recovery of structural information more
difficult. Optimization of data reduction before the application of algorithms to the many frames
of data collected is not straight forward. It depends on the detector characteristics, the sample
being measured and the nature of the tools used downstream to recover the desired information
– for example, the convergence of the of iterative algorithms.

We have collected large numbers (millions) of low-fluence radiographs of randomly oriented
objects using two charge integrating PADs developed at Cornell to test the signal conditioning,
verify detector performance, and gain practical experience with reconstruction algorithms. The
first of these is the LCLS-PAD [6], that has the same CMOS chips used to make the instrument
installed at the Coherent X-ray Imaging (CXI) beamline at the Linac Coherent Light Source.
Results of these measurements have recently been published. [4] The second PAD is the high
dynamic range, kilohertz imaging, mixed-mode pixel array detector (MMPAD) that is the
subject of another paper in these proceedings. [7]

For the LCLS-PAD, a copper anode x-ray tube (TruFocus 6050 Cu) was used to generate
low-intensity Cu Kα x-rays. A 50 micron nickel filter was use to attenuate higher energy
bremsstrahlung and Kβ florescence. A pattern was cut out of x-ray opaque lead sheet to make
a shadow mask. The sample was continuously rotated using a Newport URS100BPP rotation
stage with an axis of rotation perpendicular to the face of the detector. The data framing
and object rotation were not correlated. Hundreds of thousands of frames were collected with
fluences as low as just 2.5 photons per frame. The images were thresholded and compressed into
list of coordinates of photon hits. This compressed list of frames was scrambled and used as
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Figure 1. A graphical representation of the iterative expectation maximization algorithm used
to recover structural information from a randomly rotated sample.

an input for an expectation maximization algorithm. [8] Details about the specific application
of the expectation maximization algorithm applied to this data can be found in reference. [4] A
simplified graphical representation of the iterative expectation maximization algorithm used is
is shown in figure 1. The essence of the algorithm is this: An initial random model is generated
without input from the data. The model is transformed (in our case, rotated) to with discrete
values of a parameter so that the orientation space of the sample is covered to a desired resolution.
For each of these transformed models, the probability that each of the data frames is associated
with it is calculated. These probabilities are used, with the data frames to produce expectation
updates to the transformed models. An inverse transform is then applied to each to put them in
the same orientation. With the expectation updates in the same orientation, they are averaged
and used as the input model for the next iteration.

Using thresholded data of a randomly oriented sample averaging 2.5 photon per frame as an
input, this algorithm successfully recovered a high-contrast 2-D object – shown in figure 2.

Data collected with the MMPAD are meant to test the ability of similar recovery of a 3D
structure with one axis of rotation and lower contrast. Millions of frames and well over a terabyte
of data are still being analyzed. The silver anode x-ray source used was run at 20 keV and low
current to produce a continuous x-ray spectrum below the florescence of the silver. A 1 mm
aluminum filter was used to attenuate and harden the generated x-rays. Forty-five centimeters
from the source, a sample was mounted in front of the detector, on a stage so that the axis
of rotation was parallel to the plane of the detector. A static x-ray image of the sample taken
with the detector is shown in Figure 2. A sample frame from a data set taken with about 100
photons above threshold is also shown, along with the comparison of summing 5000 frames with
different thresholds. The 5000 frames is a small subset of data collected on the sample while
continuously rotating. Without proper thresholding, Figure 2(c), detector systematics quickly
dominated summed frames. Variations in pixel offsets, detector structure, and small temporal
shifts in the detector become apparent.
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Figure 2. (a) A lead x-ray mask mounted in an aluminum aperture. (b) Static x-ray image
of the pattern collected as 432 individual frames with approximately 1/5 photon per pixel per
frame. The frames were thresholded and averaged. (c) A reconstruction using randomly-oriented
data having an average 2.5 photons/frame and 1.2 million recorded photons. [4]
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Figure 3. The effects of signal conditioning. A) a high flux static image of a test sample.
B) a single low-flux frame. C) the addition of 5000 low-fluence frames with a threshold on the
nominal zero level. D) the addition of the same 5000 frames with the threshold set at 15 ADU.
The sample was continuously rotating.
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