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ABSTRACT: It is usually assumed that the Flory—Huggins interaction parameter y in polymer blends
can be represented by a structureless, pointlike interaction. On a local scale, however, the Flory—Huggins
parameter must show a spatial dependence as it basically reflects the segment—segment interaction
potential. We show that SANS can be used to access this spatial dependence and that even in the SANS
regime, a pronounced Q dependence of y is found. The polymer blend used in the experiments was a
polystyrene/poly(p-methylstyrene) blend. As we did not want to rely on literature values for the segment
lengths of PS and PPMS, respectively, we measured the isotope blends of h-PS/d-PS and h-PPMS/d-
PPMS separately. A modified random phase formula based on the PRISM theory of Schweizer and
Chandler is used to evaluate the data and fit a simple model to x(Q). We find that the range of a Yukawa-
like segment—segment interaction potential is about 9 A.

1. Introduction

The recent years have seen a large number of experi-
ments aiming in the understanding of the dependence
of the Flory—Huggins interaction parameter y in binary
polymer blends and diblock copolymers on temperature,t
composition,233435 and pressure.*~7 Most of the cited
literature is devoted to SANS and SAXS experiments.
More recently, synchrotron SAXS studies were done on
the same topic.8

All studies mentioned above have in common that
they use the well-known Flory—Huggins lattice model®
to describe the thermodynamics of polymer blends. This
approach introduces a dimensionless quantity called the
x parameter, which in the original version of the theory
is a purely enthalpic quantity. To interpret the result
from SANS experiments, the random phase approxima-
tion of de Gennes?? is widely used, which contains the
same y as a wave-vector-independent parameter. The
Q independence arises from the fact that y is usually
regarded as arising from a structureless, short range,
monomer—monomer interaction. The spatial depen-
dence in this approach can be modeled by y 0 6(r), where
o(r) denotes the delta function. More recently, Schweizer
et al. have shown in a series of ambitious papers!! that
the y parameter reflects the direct correlations present
in the system and hence should depend on the wave
vector Q. This work was prompted by those papers, and
we present results showing that y is indeed a function
of Q. We focus on a binary polymer blend, as it
represents a conceptually simpler system than a diblock
copolymer. The material chosen was a 50/50 blend of
polystyrene (PS) and poly(p-methylstyrene) (PpMS). For
this system, the temperature dependence of the Flory—
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Huggins parameter has been determined earlier by
Londono and Wignall*?2 and by Jung and Fischer.13

A simplified theory based on Schweizer’s approach for
the description of y in terms of direct correlation
functions is used to fit the data and to extract the
desired quantity x(Q). In the framework of this study,
we also measured the temperature dependence of the
unperturbed dimensions of PpMS, which will be pub-
lished in a separate paper.1*

The present paper is organized as follows: in the
theoretical section, we present the basic features of the
original Flory—Huggins lattice theory and the random
phase approximation for the scattering from binary
polymer blends. Then we give a brief sketch of the
PRISM theory of Schweizer et al., which goes beyond
mean field theory. After the description of the experi-
ment, we present the results and give a brief conclusion.

2. Theoretical Section

2.1. Flory—Huggins Lattice Theory. The standard
theory employed to the thermodynamics of polymer
blends is the well- known Flory—Huggins lattice model.
It mimics the repulsive forces between the segments by
the requirement that one lattice site can only be
occupied by a single monomer. The attractive interac-
tions between nonbonded monomers are modeled by a
mean field approach. This leads to a relatively simple
form for the (excess) Helmholtz free energy AF of a
bimodal polymer blend:®

AF_ 1 1
T N_A(PA In g, + N_B(PB In @5 + x@aps (2.1)

Here, Nag and ¢a g denote the number of segments and
the monomer concentration of species A and B, respec-
tively. In the above notation of the free energy, the
monomer concentration ¢ is to be understood as a
segment number density. y is the Flory—Huggins ther-
modynamic interaction parameter. The system has been
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assumed to be incompressible, reflected by the condition
patog=1 (2.2)

The first two terms in eq 2.1 represent the ideal entropy
of mixing of two polymer chains. Because of the con-
nectivity of the chains (large Nag), these terms are
rather small for long polymer chains. The last term is
the enthalpy of mixing. The y parameter is a priori a
purely energetic term. Because of the small entropy of
mixing, miscibility can only be achieved if y is very small
or negative. This explains why most polymer blends are
immiscible.

The curve in the phase diagram, where spontaneous
demixing occurs, is called the spinodal. It is defined by
the condition 3°2AF/d@pa2 = 0. For chains of equal lengths
of N segments and a 50/50 composition, this is given by

yN =2 (2.3)

Furthermore, y is generally viewed as a purely segmen-
tal, hence local, quantity, which from eq 2.1 is param-
etrized by y = A/T, A being a system specific constant.

Experimentally, it has been shown for many systems
that y can be better represented by the empirical form

Iy
1= + I (2.4)
T'n represents the enthalpic part whereas I's contains
(segmental) entropic contributions.®

2.2. Scattering from a Binary Polymer Blend.
Small-angle neutron scattering (SANS) has been proven
useful to probe the thermodynamics of polymer blends
over the past decade. The formula usually applied when
interpreting scattering data from binary blends is the
“random phase appoximation” (RPA) derived for poly-
meric systems originally by de Gennes.’® de Gennes
used a linear response theory to calculate the concen-
tration fluctuations in the melt. The intermolecular
interactions were treated in a mean field sense and
furthermore, incompressibility of the melt was assumed.
This leads to the following formula for the structure
factor S(Q) of a binary blend in the one-phase region:

1 1
§0ANAgD(QRgA) q)BNBgD(QRgB)

SQ) = -2y (2.5)

Here, go(QRy) are the respective Debye functions, given
by21

2
4 4
QRy

Ry is the radius of gyration of the polymer chain.

Equation 2.5 has been widely used to investigate the
spinodal decomposition of polymer blends (see, e.g. refs
32 and 33) and especially to determine the temperature
dependence of the respective y parameter. Again, y is
basically treated as a Q-independent parameter.

2.3. Integral Equation Theory of Polymer Blends.
The original derivation of the RPA was given for
electron—electron correlations in the electron gas by
Pines and Nozieres.?! In that framework, the (bare)
interaction is the Coulomb interaction, and hence, it is
Q-dependent. A priori, there is no reason in the case of
a polymer blend this should not be the case. Schweizer
et al. have developed an integral equation theory for

Q) = (exp(—Q°R,) — 1+ Q°R,) (2.6)
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polymer blends which allows the calculation of the Q
dependence of the interaction (and hence, of y) explicitly.

For reference, we give a brief outline of the PRISM
formalism of Schweizer et al. It is beyond the scope of
this paper to give a rigorous treatment of this theory;
details can be found elsewhere (see below).

The reference interaction site model (RISM)!>16 and
its extension to polymers (PRISM)!117 is based on the
idea that one can model the complex molecules as being
composed of elementary units which interact by pair-
wise decomposable forces. In particular, in the case of
polymers, one may visualize those units as the mono-
mers or statistical segments.

The structural correlations in the melt are then
described by a generalized Ornstein—Zernicke matrix
integral equation, which we give for simplicity in
Fourier space:

H(Q) = 2(Q)C(Q)[L(Q) + H(Q)] (2.7)

H(Q), C(Q) and (Q) are square matrices of rank Na +
Ng, where here Nag denote the number of interaction
sites on species A and B in the blend. More specifically,
H(r) comprises the elements papsh(r), where h(r), the
so-called (total) intermolecular correlation function, is
related to the intermolecular radial site—site distribu-
tion g(r) by h(r) = g(r) — 1. i,j are either A or B. pas
denotes the molecular number densities of species A and
B, respectively. Hence, as an example, the notation hg,g;
means the intermolecular correlation of site o. on species
A and site 5 on species B.

C(r) is given by the elements cp(r) and denotes the
direct intermolecular correlation function. This means
that C(r) comprises all correlations arising from direct
contacts of the segments. Finally, Q(r) is the (normal-
ized) intramolecular correlation function. Hence it
describes correlations along the same chain. The struc-
ture factor matrix for the blend is now given by the sum
of the intramolecular and the intermolecular correlation
function:

S(Q) = €(Q) + H(Q) (2.8)

To proceed further, Schweizer et al. have made a series
of assumptions which seem to hold in a polymer melt.
First, explicit chain end effects are ignored.!! This
simplifies the correlation functions considerably as they
are now independent of the specific site:

haiﬁj(r) = hy(r)
Caibj(r) = Cy(n)

The matrix Q(Q) is diagonal, since it describes the
intrachain correlations. Hence we can write

Qij(Q) = piw(Q)éij

Furthermore, for the purpose and within the errors of
our experiment, we can set w(Q) equal to the Debye
function gp(QRg) given by eq 2.6.

Equation 2.7 can be written in terms of only 2 x 2
matrices instead of square matrices of rank (Na + Ng),
as the latter decompose into identical 2 x 2 matrices.
Solving for H(Q), we get:

H(Q) = (1 - 2Q)C(Q)) "2(Q)C(QL(Q)

Likewise, the structure factor matrix is given by

(2.93)
(2.9b)

(2.10)

(2.11)
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S(Q) = (1 — RQ)IC(Q)) 'R(Q)

The total scattering we observe in the experiment is
obtained from eq 2.12 by

(2.12)

b
S = (bA,bB)S(Q)(b‘B\) (2.13)

ba and by, denote the neutron scattering length densities
for species A and B, respectively.

For a two component system, Schweizer et al. have
shown!! that (2.12) together with (2.13) can be cast in
a form which looks like the RPA but has a Q-dependent
x parameter in it (see also Higgins and Benoit!® for a
general formalism to convert (2.12) and (2.13) into
(2.14)):

1 1
@ANAQD(QRgA) §0BNBQD(QRgB)

STQ) = — 2xe(Q)

(2.14)
where ¥¢f(Q) is given by

7(Q) = 3(Can(Q) + Cp(@) — 2Caa(Q) (2.15)

Hence #¢(Q) is expressed by a combination of direct
correlation functions.

Equation 2.14 is the central formula in this work and
will be used later in the data evaluation. As will be
shown in the Experimental Section later, we will
measure the left-hand side (hence the full scattering
from the binary blend) and the first two terms of the
right-hand side separately. The latter quantities will be
accessed by measuring an isotope blend of species A and
B, respectively, where essentially the unperturbed De-
bye functions are seen in the experiment. The desired
quantity »¢f(Q) is then simply obtained by subtraction.

It has to be noted that the incompressibility assump-
tion has been imposed on the PRISM equations in a
post-facto manner to arrive at (2.14). For the experi-
mentalist it is very appealing that the familiar form of
the RPA can still be used to evaluate the data. The
incompressibility assumption neglects density fluctua-
tions and cross-correlation terms between concentration
and density fluctuations. This should essentially be true,
as the largest part of possible density fluctuations will
be subtracted out by appropriate data manipulation.
Hence in eq 2.14, only the concentration fluctuations
are included which contain the relevant information. We
discuss the validity of the incompressibility assumption
in Appendix I1.

In principle, PRISM can be used to calculate ¥¢(Q)
by solving a multidimensional system of nonlinear
equations. We address the question from a different
approach. In Appendix I, we show that to first order this
effective function can be written as

B Q2 oAz)
Xeff(Q) - rs(l - 10 +
T, exp(—0g/8)[5IN(Q0ne)
TL+&Q) \ Qf

+ cos(QoAB)) (2.16)

Here, T's and I'\# denote the entropic and enthalpic
contributions as in the simple model of eq 1.4. oA and
og are proportional to the van der Waals radii of
segments A and B, respectively. As shown in Appendix
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Table 1. Sample Characteristics

polymer Mw (g/mol) N Mw/My,

32 000 308 1.02
35000 312  1.05
63 500 538 1.04
53 700 420 1.05

polystyrene-hg (h-PS)
polystyrene-dg (d-PS)
poly(p-methylstyrene-ho) (h-PPMS)
poly(p-methylstyrene-dig) (d-PPMS)

I, the first term in eq 2.16 has the meaning of a
segmental excluded volume sphere associated with the
noncombinatorial entropy of mixing. The second term
consists of the Fourier transform of an effective Yukawa
potential with the interaction range & and a lower cutoff
at the mean van der Waals’ radius oag. This cutoff arises
from the geometrical (hard core) extension of the
monomer, which even in the SANS regime cannot be
regarded as pointlike.

In our approach, we use the experimental results to
get more information about the strength of noncombi-
natorial entropy effects and the range of the segment—
segment interaction.

Note that eq 2.16 reduces to the familiar form (eq 2.4)
in the limit Q — 0, if we set T'y = T'\¢ exp(—oas/&)(0ap/
(& +1)).

Some brief comment should be made on why we can
expect a Q-dependent y parameter on physical grounds.
The widely used RPA theory is a mean-field approach
using essentially a hard-core repulsion for the direct
correlation functions. In other words, y(r) O 6(r). All
relevant physical phenomena like spinodal decomposi-
tion can be explained by using such a Q-independent
interaction parameter, as they only need a local interac-
tion and the connectivity of the chains. This behavior
is very similar to the appearance of long range order in
liquid crystals, where we have only short-range poten-
tials as well between the molecules (the respective order
parameter is the nematic director instead of the critical
concentration).

In both polymers and liquid crystals, the interaction
potentials depend on the distance between the interac-
tion constituents. There is no reason for the “real”
potentials to be pointlike. For this reason, the interac-
tion parameter in polymers shows pressure dependence.
2 In the polymer blend investigated here, it is shown in
this work that the screening length & introduced above
is of the order of 10 A and hence a Q dependence of y is
visible even in the SANS regime.

3. Experimental Section

The homopolymers were obtained from Polymer Standards
Service in Mainz, Germany. Table 1 shows the characteristics
of the samples. The blends were made by dissolving the
components in toluene followed by precipitating the mixed
polymer solutions in methanol. The precipitates were then
dried in a vacuum oven at about 40 °C. The resulting glassy
powder was pressed into pellets of 1 mm thickness using a
hot press at 160 °C. The pellets were free of visible bubbles
and were subsequently placed between two quartz glass
windows. For the SANS experiment, these sample assemblies
were mounted in brass heating blocks. High-temperature
O-ring seals were used to prevent oxygen from entering the
sample during the data acquisition process. In addition, the
SANS experiments were performed under an inert gas atmo-
sphere to further keep out the oxygen.

The actual experiment was based on eq 2.14 given in the
theoretical section. The idea specific to this experiment was
to measure the term on the left-hand side of eq 2.14 and the
first two terms on the right-hand side in a separate experi-
ment. To this aim, a 50/50 blend of protonated PS and
deuterated PpMS was prepared (left-hand side) and two
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(50/50)-isotope blend h-PPMD/d-PPMS
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Figure 1. Data of the 50/50 isotope blend of PpMS/d-PpMS
at T = 210 °C. The data were fitted by the Debye function.
Error bars are included.

separate 50/50 isotope blends of h-PS/d-PS and h-PpMS/d-
PpMS, respectively. From the isotope blends, the unperturbed
dimensions of PS and PpMS can be obtained.?” Hence we did
not rely on literature values in our experiment, but measured
all required quantities. In addition to the 50/50 isotope blends,
we prepared 10/90 and 20/80 mixtures of both the h-PS/d-PS
and the h-PpMS/d-PpMS. By this we attempted to check if the
radius of gyration changes with concentration revealing a
nonnegligible y parameter of the isotope blends. Bates et al.
have reported a nonvanishing Flory—Huggins parameter for
an isotope blend of high molecular weight PS.1%2% Thus, it was
necessary to examine if a residual y occurs.

A comment on the assumption of having unperturbed
dimensions of both constituents in the blend should be made.
In principle, the dimensions of the individual constituents
could change upon mixing. This has been found from a
theoretical point of view in Monte Carlo simulations* and in
experiments.*t Briber et al.** have made a SANS study of
deuterated PS in PVME. They found a slight expansion of the
unperturbed dimensions of the PS chain over a reference
experiment done with an isotope blend of d-PS in H—PS.
However, this change in Ry was only 7%. In our case, it can
be argued that PS and PpMS are much more similar in
monomeric structure than PS and PVME, which have very
unlike segments. Hence, if a change in Ry upon mixing occurs,
it should be even smaller than the change found in Briber’s
work, and hence, the assumption seems to be justified.

The data were taken at the SAND instrument of IPNS at
Argonne National Laboratory.?® The pulse frequency of IPNS
is 30 Hz. The sample to detector distance was fixed at 2 m;
the wavelengths used ranged from 1.4 to 14 A. This translated
into a large Q range of 0.005—0.6 A~1. The detector was a 40
x 40 cm? area sensitive *He detector with 128 x 128 channels.
Typical integration times were 2 h per sample.

The data were absolutely calibrated using a silica standard,
following a routine procedure at IPNS.%° For all temperatures,
the incoherent scattering arising from the protons in the
samples were measured separately. Also, transmissions have
been recorded for each sample at each temperature to facilitate
absolute calibration. The scattering from the empty container
as well as the incoherent scattering was subtracted from the
data weighted by the appropriate transmissions. Furthermore,
the deuterated PS and PpMS matrices have been measured
at one temperature (198 °C). The incoherent scattering from
the deuterium should be negligible, but we found that the
d-matrices scattered more than the calculated values, probably
due to incomplete deuteration. An example for the resulting
curves after doing all the corrections is shown in Figures 1
and 2. In Figure 1, the absolutely calibrated data of the 50/50
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(50/50)h-PS/d-PPMS blend
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Figure 2. Data of the 50/50 h-PS/d-PpMS blend at all
temperatures investigated. The critical scattering upon ap-
proaching the phase separation temperature is clearly visible.
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Figure 3. Kratky plots of the 50/50 h-PS/d-PpMS blend at
three temperatures. The plateau shows that the background
was properly subtracted.

isotope blend h-PpMS/d-PPMS are displayed. Figure 2 shows
the h-PS/d-PpMS-blend data at all temperatures investigated.

In Figure 3, the data are plotted in the Kratky format. This
format is especially useful to check for a proper background
subtraction. From the Flory-ideality assumption,? it is known
that in the melt the chains exhibit essentially unperturbed
chain statistics almost down to the monomeric level. In the
intermediate Q regime, the structure factor is proportional to
Q™2 and one should oberve a plateau plotting Q2-S(Q). We
indeed find a pronounced plateau showing the validity of our
background subtraction.

Temperatures were controlled within 0.1 °C in stability with
an absolute precision of about 2 °C. As in general there is a
gradient between the point where the temperature is measured
and the interior of the quartz cells, we monitored the interior
temperature by a separate sample container modified in a way
that a thermocouple could be placed inside the quartz cell.
Data have been collected at five different temperatures for the
50/50 blend and the isotope blend h-PpMS/d-PpMS. For the
PS-isotope blend, we only recorded the lowest and the highest
temperatures, because PS is a system known to have no
temperature change in Rqy.2° This was confirmed by our
experiments. All measurements on isotope blends were carried
out at three different concentrations for reasons mentioned
above.
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Extraction of the Flory—Huggins parameter as a function
of Q was done based on eq 2.14, which we recast here in a
form directly accessible by experiment:

—1
Q= — .
®aVa 9p(QRy A" Ve gp(QRy )Ap
2 eff
AR 2 (?) (3.1)
VoAp

Vag are the volumes of chains A and B. v, is a reference
segmental (or monomer-) volume and conveniently expressed
by Vv, = (vave)*2. Ap is the scattering length density difference

given by
b, 2bg
Ap = L~ — ! (3.2)

mon mon
Un Vg

ba and bg, denote the scattering lengths of the atoms of
monomer A or B.

4. Results and Discussion

To obtain the desired quantity x(Q) from eq 3.1, we
had first to make sure that the isotope blend data can
be fitted by the Debye function and hence reveal the
unperturbed dimensions of PS and PpMS, respectively.
This procedure implies that the isotope y parameter is
negligible. For PS, this effect has been investigated long
ago by Bates et al. and by Boothroyd et al.1%20 Bates et
al.1® showed that a small residual y occurs for high
molecular weight chains. Boothroyd et al.?° investigated
the influence of the isotope y parameter on the unper-
turbed dimensions for the chain length used in his
study. The largest influence on the scattering was
estimated to be 6% at low Q for a 400K molecular weight
chain. Our polymer samples are much lower in molec-
ular weight; hence, no influence of a residual y is to be
expected. To make sure that this is really not the case,
we have measured several concentrations as mentioned
above. The data are subsequently plotted in the Zimm
format.?6 The Zimm plot makes the tacit assumption
that x'° is independent of the concentration. This
behavior is supported by theoretical studies.?® From the
slope of the ¢—0 extrapolation, »'° is found to be
negligible. We get 2.5 x 1074, which is not too far off
from the value of 1.72 x 10~ by Bates et al.,!® given all
the experimental uncertainties. Figure 4 shows such a
Zimm plot for the PS isotope blend at T = 160 °C.

The fit of the h-PpMS/d-PpMS isotope blend is in-
cluded in Figure 1 to show that the Debye function fits
the isotope blends very well. Given this, one could think
of calculating the first two terms on the right-hand side
of eq 3.1 from the parameters of the Debye-fit and
subtract the calculated curves from the left-hand side.
The reason for doing so would be the elimination of
statistical errors caused by the isotope blend data.

This idea was checked in Figure 5, where the differ-
ence in subtracting the actual experimental data from
the left-hand side of eq 3.1 vs subtracting the calculated
curve (Debye function) at T = 160 °C is shown. At
intermediate Q > 0.04 A1, differences emerge. This
difference can in part be attributed to the worse
statistics of the direct subtraction, but in part the effect
is real. As the effect we are looking for is very small,
we decided to use only the data sets where the actual
experimental data of the isotope blends have been
subtracted.
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Zimm-plot of the PS isotope blend at T = 160 °C
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Figure 4. Zimm plot of the PS isotope blend at T = 160 °C.
From the Q — 0 extrapolation, it can be seen that the isotope
x parameter is very close to zero. The volume fraction of the
deuterated species is 10% (triangles), 20% (open squares), and
50% (circles), respectively.

comparison of direct data subtraction vs. calculated subtraction
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Figure 5. Comparison of a direct data subtraction (filled
circles) vs the subtraction of the calculated Debye functions
(open squares) from the left-hand side of eq 3.1 at T = 160° C.
At intermediate Q > 0.04 A-1differences in the two curves
appear. This can on one hand be attributed to small errors in
absolute calibration as well as a very small residual isotope y
parameter which would slightly distort the Debye function.

Figure 6 shows the Q dependence of the Flory—
Huggins parameter for the five temperatures measured
derived by the procedure described above. Clearly, x is
not a constant in Q as generally implicitly assumed in
the interpretation of SANS data. On the contrary, the
Q dependence seems to be rather pronounced. At low
Q, the slope of the curve is smaller than at high Q,
indicating a plateau. In that regime the assumption of
a Q-independent Flory—Huggins parameter is reason-
ably well justified. Also, the decrease of y with Q is more
pronounced for the lower temperatures suggesting that
the interaction length & is larger than at higher tem-
perature. This effect is obscured in Figure 6 due to the
large number of data points shown. Hence we replotted
the data only for the lowest and the highest temperature
in Figure 7 for clarity.

We attempted to fit the data by the formula (eq 2.16)
given for ¢(Q) in the Theoretical Section. Leaving all
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x(Q) at all temperatures measured
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Figure 6. Q dependence of the interaction parameter y (direct
data subtraction) at all temperatures investigated. Temper-
atures are 160 (filled squares), 173 (open diamonds), 185 (filled
triangles), 198 (open squares), and 210 °C (open hexagons),
respectively. A Q dependence is clearly seen. For the lower
temperatures, it is more pronounced.

v(Q) for T=160°C and T=210°C
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Figure 7. Plot very similar to Figure 6, but only two
temperatures (160 and 210 °C) shown. The difference in
curvature for the lower (filled squares) and the higher tem-
perature (open hexagons) is clearly visible. Fits with eq 2.16
are also included.

parameters free, this fit is not stable. Hence we aimed
in obtaining some of the parameters from an analysis
of the Q — 0 limit. We did this following the traditional
approach of obtaining y as a function of temperature.
Equation 3.1 is written in the Zimm format valid at
small Q:

dlfl(Q) = 1 1
de APZVAW(P APZVBW(:L - @)
2 2
Q_2 RgA Rgs

ZXF

+ —
31A0V\e APV — @) Vv AP

4.1)

Here we have explicitly used the term x~ to denote that
no Q dependence is assumed. In the Zimm region, this
assumption is right, as can be seen from the plateau in
Figure 6.
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Figure 8. Low-Q (Flory—Huggins) parameter yr as a function
of temperature.

The Flory—Huggins parameter is obtained from the
intercept of a straight line fit of the inverse cross section
vs Q2. The y(T,Q—0) values from the intercepts are
plotted in Figure 8. They fall on a straight line when
plotted vs 1/T as anticipated. We obtain I's = —(6.6 £
0.5) x 1072 and I'y = 5.67 £ 0.2 K. As is shown in
Appendix I, I's = —u, a quantity reflecting the strength
of noncombinatorial entropic effects. To be more precise,
u can be regarded as the difference of the strength of
the direct correlation function Cag to the mean value of
Ca and Cg. A negative I's means a positive u and this in
turn favors mixing of the monomers due to excess
clustering of PS with PpMS monomers (see Appendix
1). One could also say the system (locally on a segmental
base) wins entropy by clustering different monomers.

The values of I', and T's are on the same order as the
ones obtained by Londono et al. for a PS/PpMS system
of similar molar mass and concentration.* The mean
field spinodal temperature in our case is found to be
143 °C. In the limits of the errors, this is exactly the
same temperature we would get when using the pa-
rameters for I'y and I's of Londono et al. with our molar
masses (which would be 142 °C). Thus, our analysis of
the Q — 0 limit agrees well with their results, although
the parameters themselves are somewhat different.

Fixing T's to the value arising from the Q — O
extrapolation, eq 2.16 could be fitted to the data. It turns
out that we cannot easily separate ¢ and &, as they
appear in the combination ¢/ in the exponent. Thus,
we needed to keep one parameter constant. We chose
o, as it essentially reflects the van der Waals radius of
the segments and experimental values are available. We
used a publication by Bondi?* to get an estimate of the
van der Waals volumes of the PS and the PpMS
monomer units, respectively. The Bondi paper uses a
group contribution method to estimate van der Waals
volumes of larger chemical units. We estimated the van
der Waals radii by assuming a spherical shape. We
obtained 3.0 A for ¢PS and 3.2 A for 6"PMS, We are aware
that there a more recent studies on van der Waals radii
using more sophisticated methods than the ones Bondi
was using.?> However, for our purpose, a rough estimate
of o is sufficient.

In the fits, we need oa as well as oas. We simply used
the mean value of PS and PpMS, 3.1 A, for the latter.
Fixing B and o, we obtain stable fits for £ and I'*ff using
eq 2.16. The fits are displayed for the 160 °C data and
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Table 2. Results of the Fits with Model (Eq 2.16)

T(°C) £EA e (K)
160 8.6+03 5.92 £ 0.02
173 10.4 +0.3 5.87 +0.03
185 85+0.2 5.92 + 0.02
198 7.7+£04 6.20 + 0.02
210 52+0.3 6.51 = 0.02

Table 3. Results of Fit with Thread Limit Model (Eq 4.3)

T(°C) EA Th (K)
160 87403 5.61 + 0.03
173 10.6 + 0.3 5.66 + 0.03
185 8.7+0.2 5.60 + 0.02
198 8.0+0.2 5.67 + 0.03
210 55403 5.72 +0.03

the 210 °C data of x(Q) in Figure 7. The results for all
temperatures are shown in Table 2.

We only obtained reasonable fits if we restrain Q to
be smaller than about 0.065 A, This shows that the
underlying assumption of formula 2.16 (or A11), namely
that C(r) can be expressed solely by the first term in
the expansion (eq A2) (see Appendix 1), is valid only for
low Q. In other words, at low Q, which corresponds to
large distances, it is sufficient to approximate the direct
correlation function by a hard sphere only. At larger Q,
however, this seems to break down, and a more sophis-
ticated model for C(r) is needed.

In view of the above, we were interested what values
for § would emerge from the thread—polymer idealiza-
tion of Schweizer and Curro.?? It is a further simplifica-
tion of the hard core potential and basically states that
the hard core diameters 0—0 in a manner leaving the
(monomer) density finite. Then y(r) can be written as

Vpg(r)
T

x(r) =T0(r) — (4.2)

where vag(r) is the Yukawa potential (eq A3). The first
term is again the hard core repulsion, the second term
the weakly attractive potential. Clearly, this equation
cannot describe the details of the interaction on a very
local scale by construction, but it should be valid at low
Q. Fourier transforming eq 4.2, we simply obtain

x(Q) =T+ (4.3)

h
T(1 + Q%)

'y and T's are the exact counterparts to eq 2.4 in the
theoretical section (which evidently is the Q — 0 limit).
Again, we left I's constant and fitted I'y, and & to the data.
The results are shown in Table 3. They do not differ
much from the results of the explicit hard core model.
This demonstrates that the crucial assumption of thread-
like polymer chains is valid in the low Q limit. 27/Q
gives an estimate for the corresponding real space
distance. From this, we observe that on length scales
of about 100 A the assumption is valid.

One can clearly see that the interaction range & is
slightly temperature dependent. At high temperatures,
far away from the phase separation temperature, & is
smaller than closer to the phase transition, where it
seems to level off to a constant value of about 8.5 A.

We also attempted to obtain & from a fit of the Zimm
region only. Recalling eq 4.1 and using x(Q) = I's+I'w/
T(1 — Q?%£?) (from eq 4.3 for small Q), we can estimate
& from the slope a of the Zimm fit:
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R, 2 R, ? 2r
1| “9a 9s h.o
a = + + — 4.4
3(g0NA a- (p)NB) I ¢ (4.4)

The Zimm analysis has a clear advantage over the
model (eq 2.16) in that the fit is just a straight line and
hence conceptually much simpler.

Table 4 shows the result. The error in £ is estimated
to be about 0.8 A for all temperatures. The results follow
the same trend; with decreasing temperature (closer to
the phase transition) the interaction range is increasing.
Thus, by using three different evaluation methods, one
obtains very similar results for the main quantity of
interest, the range & of the segment—segment interac-
tion potential. To examine whether this temperature
dependence is specific to the system chosen or of more
general character, more experiments on different isotope
blends should be performed.

To our knowledge, two more groups have examined
the q dependence of the y parameter. Brereton et al.*?
have investigated three different binary mixtures. One
of the systems corresponds to the system used in the
present work. They give a simple form of ¥(Q) = x°(1 —
KQ?) which is an ad hoc assumption. This form is
similar to the low-Q limit of eq 4.3 if we identify y° with
I'n/T and neglect I's. The main purpose of Brereton et
al. was to investigate the very anomalous behavior of
the mixture polytetramethy carbonate/polystyrene. All
the analysis is based on the simple model for y(Q) given
above and is restricted to very small Q (Zimm region).
They extract K from the intercept of a plot of a quantity
So(T)(I12 + 2Kys) — K vs So(T) for several temperatures.
As the effect found in polytetramethy carbonate/
polystyrene is orders of magnitude larger than in PS/
PpMS, the authors only give the comment that, in the
latter case, the data are consistent with K being about
zero without doing a thorough analysis of this system.

Balsara et al.3* evaluated data from several polyole-
fine blends using a method similar to ours to evaluate
x(Q). They define an excess function E(Q), which cor-
responds to our x(Q). A small Q dependence of y is found,
but the data show an upward curvature. We found y to
be a decreasing function of Q. Hence, the results
disagree with our findings. The origin of the discrepancy
cannot be explained at the present state, but we believe
that this may be because a different system was used
in ref 34. In addition, the authors did not do the
experiments with the main purpose of evaluating x(Q)
but in order to obtain the concentration dependence of
x- The present work was especially designed to evaluate
the Q dependence. Further measurements should be
done in order to solve the discrepancy.

5. Conclusion

We have shown that SANS can be used to address
the question of the Q dependence of the Flory—Huggins
interaction parameter y in a binary polymer blend.
Contrary to the assumption that y can be viewed as a
merely local quantity with a spatial dependence pro-
portional to (r), our data show a striking Q dependence
even in the SANS regime except for low Q. Moving to
higher Q values, y is clearly not a constant and falls off
as a function of Q. We attempted to find a model to
describe the observed behavior and which at the same
time preserves the familiar form y = T'w/T + T in the
limit of Q — 0. This model has the interaction range &
of a Yukawa like segment—segment potential and the
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Table 4. Results of Zimm Analysis (Eq 3.1)

T(°0) EA
160 8.8+0.38
173 9.1+08
185 8.2+0.8
198 7.7+£08
210 6.4+038

hard core (essentially the van der Waals’) radii of the
segments as additional parameters. The interaction
range is found to depend on temperature, it increases
from about 6 to about 9 A when lowering the temper-
ature from 210 to 160 °C. These values did not change
significantly for the three models used in the analysis
(see sections 3 and 4).

The parameter I's has been given an explicit meaning.
It describes noncombinatorial (segmental) entropy ef-
fects. Hence the underlying assumption of the original
Flory—Huggins theory that a splitting of entropic and
enthalpic effects can be made (see eq 2.1) is too simple.
Instead, the enthalpic term of the Helmholtz free energy
proportional to y contains part of the entropy as well.
This notion is not entirely new, but an explicit explana-
tion for I's has been given in the present work.

Acknowledgment. We thank Lew Fetters for the
GPC determination of the molecular weights of our
polymer samples and Wim Pyckhout-Hintzen and Walter
Schirmacher for helpful comments and discussions. We
would also like to thank D. G. Wozniak (IPNS) for his
technical help. This work was supported by the Depart-
ment of Energy (Grant DE-FG02-97ER62443). This
work also benefited from the use of the Intense Pulsed
Neutron Source, which is funded by the U.S. Depart-
ment of Energy, Office of Basic Energy Sciences, under
Contract W-31-109-ENG-38 to the University of Chi-
cago.

Appendix |

In Appendix I, we derive formula 2.16 from consid-
erations on the general form of the interaction param-
eter y. Expressed by the direct intermolecular correla-
tion functions, ¥¢f(Q) is given by

£7Q) = 5Can(@ + Can(Q) ~ 2Ca(Q) (A1)

We see that the Q-independent Flory—Huggins param-
eter has been replaced by a combination of direct
correlation functions. We use the form for the C(Q) (or
C(r) in the first place) suggested by PRISM to proceed
in the calculation of y. Intuitively, we may argue that
the C(Q) are basically given by effective pair potentials
in a dense fluid and hence we can say that y(Q) basically
probes those pair interactions.

As it turns out, the calculation of the direct correlation
functions is not possible without appropriate closures.
Schweizer et al. have used several different approaches
over the past decade for those closures. We wanted to
follow a route where we can get an approximate analytic
expression for x(Q) which we can compare to our data.
Hence, we employ one of the simplest closures available
for C(r):1
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Cy(n = (A2)

This is the mean spherical approximation closure
(MSA). The idea is basically that inside the hard core
given by the o;; we can approximate the direct correla-
tion functions by polynomials in (r — ¢)/o and outside
by a weak attractive potential vij(r) which is realistically
of the Lennard-Jones type. gij can be identified with the
van der Waals' radii of the respective segments. The ayii
are coefficients describing the strength of the respective
term in the expansion. In principle, one could solve the
PRISM equations and obtain the coefficients ayl using
the closure (eq A2), but a direct solution using realistic
potentials and parameters o for our polymers is beyond
the scope of this work. Thus, we seek for a simplified
expression of eq A2, which contains a few experimen-
tally accessible parameters we can fit to the data.

The first step lies in a Fourier transform of C(r). This
can be done analytically if we assume a Yukawa
potentiall22 for the interaction potential between spe-
cies A and B and set v;i(r), the potential between like
segments, equal to zero. At high densities in the melt,
this assignment mimics the mutual interactions quite
accurately.

Hence we have

yaa() = € ex;i;g—r/g)
(A3)

Vapn = Vg =0

& is the screening length of the potential and is ef-
fectively a measure for the interaction range. € is a
parameter denoting the strength of the interaction. The
above assignment of the interactions can be explained
by recalling that for species A and B, there are repulsive
and attractive interactions present with regard to their
own species and with regard to the other species. Setting
vaa and vgg equal to zero and describing vag by a (weak)
Yukawa potential reflects the fact that the A—A and
B—B interactions are different from the A—B interac-
tions. In general, the latter are slightly more repulsive
than the former (but the difference is small). Hence ¢ is
small but positive in most cases. One could also visualize
Vag as an excess potential with regard to vaa and vgg.

We would like to note that in binary alloys, the
effective ordering potential is of a similar form as our
effective y parameter. In binary liquids, the concentra-
tion fluctuations also give rise to an effective pair
interaction as has been shown by Ruppersberg and
Schirmacher.36:37 They make use of the MSA closure for
the direct correlation functions as well to describe
neutron diffraction data from liquid LisPb and Li;Ags.

The Fourier transform of eq A2 is a rather lengthy
expression. Caa(Q) and Cgg(Q) are both given by
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CQ _ al(sin(Qa) - Qo cos(Qo)) N

47 Q°

az(z cos(Qo) 2420 sin (Qo) _ LAO ) N

a3(2Q0 cos(leo—zesin(Qo) N éa ) N
a4(—24 cos(Qozg 6—036Q0 sin(Qo) _ 6Q2(<;0—3 24) (A%)

where we have left out the subscripts A and B for
clarity. Cag(Q) is given by an expression of exactly the
same form, but an additional term due to the Yukawa
potential appears. It is not just the Fourier transforma-
tion of the Yukawa potential we have to calculate, which
would just be a Lorentzian, but the integral has oag as
a lower limit:

00 . - /
Vaol@ = B [ ¢ sinQug)e PP ar

ri& (A5)
A& exp(—opg/é)
= X
1 + §2Q2
sin(Qo,g)
(TAB + cos(QoAB))

A note has to be made on the dimensions C(Q). As the
theory is usually written down in terms of dimensionless
quantities, ¥(Q) and hence C(Q) should be dimensionless
as well. Equations A4 and A5, on the other hand, yield
the dimensions of a volume. To make C(Q) dimension-
less, one has to divide by a volume. We choose the
monomer volume as a natural volume here for reasons
which will become apparent later. For now, we just keep
in mind that such a division has to be made in order to
make C(Q) dimensionless.

It becomes immediately evident that the combination
of Caa(Q), Cee(Q), and Cag(Q) has too many parameters
to be fitted to the experiment. There are 12 coefficients
ail, three parameters oij, and the interaction length &.
But keeping in mind that we want to compare to a
SANS experiment and hence that the Q values are in a
range where Qo < 1 holds for the most Q, we can
expand the C;;(Q) in a Taylor series. This yields the
following expression for Caa and Cgg:

@:(2_2 3_3)03+
ar \3 12 30 60
-3 3 a; a4)5 5
(30 * 180 " 630 " 1680/° @ (A9

For Cag, we have to add the term resulting from the
potential (eq A4):

47E% exp(—0pglE) { (aAB )

T & +1|+
(_UAB3 GABZ (UAB ) 2) 2}
6 2 \& "1 &R (A7)
However, it turns out that the fit is more stable when
using the full expression (eq A5) for the potential
instead of the Taylor series (eq A7). Thus, we retain (A5)
in the expression for y#(Q).
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A close inspection of eq A6 shows that it will not be
possible to distinguish between the coefficients a; by the
experiment in the SANS regime. One could combine all
four coefficients into a single one and fit an expression
b — cQ? to the data. The most general expression
encompassing the form of eqs A5 and A6 is given by

Xet(Q) = By — ﬂzQz +
T, exp(—0ag/8)(SIN(QUAg)
T+ \ Q&

+ cos(QaAB)) (A8)

&, B1, and B, are parameters including all coefficients
appearing in (A5—A7). We note that the limit Q — 0
coincides with the familiar form of eq 2.4 if we set I';, in
eq 2.4 = I'n¢ exp(—o/&)(o/(& + 1)). From this relation, it
becomes evident again that I', in (2.4) is very closely
related to the enthalpic part of the interaction.

p1 and B, contain a lot of hidden parameters (in
particular the a;) and their actual meaning is not
obvious. If we retain only the first term in each of the
brackets in the expansion of C(Q) (eq A6), we obtain a
more illuminating expression for yer(Q):

2_2
ety = 4 4 ( _QUA)
X (Q)_zlaASOA 1 10 +

47 3 QZOBZ 4 3 QZOABZ
aB?OB 1- 10 |~ aAB?UAB 1- 10
T, exp(—0,56/8)(SIN(QU )

T+ \ Q&

+

+ cos(Qoug)| (A9)

Here, we have omitted the subscript 1 on the coefficients
a; and added all terms Cj as demanded by eq Al.
Retaining only the first terms amounts to approximat-
ing the direct correlation functions by spheres only.

What does this expression mean? In real solutions, it
is known that upon mixing there is usually an enthalpy
change. The analogue for our case of the bimodal melt
is the last term in (2.1). But in addition, there may also
be a contribution to the entropy change apart from the
ideal mixing term given in eq 2.1. This term arises from
the way that the segments of one type might cluster
together instead of mixing with the others. The first
three terms of eq A9 reflect this excess entropy, which
we might also call non combinatorial entropy. IfA =B
(both species are the same), these terms would vanish,
of course. If A = B, there is an excess (segmental)
entropy basically proportional to the difference in the
(segmental) excluded volume spheres of species A, B and
the “mixed” sphere built by the average excluded volume
of A and B.

Equation A9 can be expanded further, if we make the
following assumptions:

og=o0,t0

S (A10)

ag = (ap +ag)2+u
Opg = (05 + 0g)/2
where 6, , and u are small. The last two equations in
(A10) need to be explained a little further. The first one

assumes that the strength of the correlation function
Cas is given by the average value of Ca and Cg plus a
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small constant which accounts for the fact that aag
usually is not just additive. It is an assumption, though,
that u is small. The last equation states that the
(effective) mean van der Waals' radius is just the
average of oa and og. This is an assumption, too, and
one could have added a small constant as well. But this
constant is included in u, because aag is multiplied with
powers of oag, and to first order, it does not matter
whether we add another small constant to oag.

Inserting (A10) into (A9) and neglecting all higher
order terms of O(2) in ¢, n, and u, we obtain

QZOAZ) rheff exp(—oag/f)
=Tl|1 -

Xeff(Q) s(l 10 T(l + §2Q2)
(sin(QoAB)

Q&

where T's = (—4a/3)ucad. T still has the dimension of a
volume while it should be dimensionless. We now have
to divide by the monomer volume, as mentioned above.
This seems to be the natural choice to render the
Fourier transform dimensionless. We can (somewhat
arbitrarily) set A equal to PS and divide by the monomer
volume of PS. Setting oa = 3.0 A, we see that the result
of the division is on the order of 1. Hence we obtain the
interesting conclusion that I's = —u. This holds also for
the Q — 0 limit. Hence, we have found an interpretation
for the parameter I's, which usually is used as a mere
fit parameter. T's is the difference of the interaction
strength of the direct correlation function Cpg to the
average interaction strengths of C, and Cg. This directly
reflects the non combinatorial entropy. If u > 0, I's is
negative and there will be a tendency of monomers of
the opposite species to cluster together which favors
mixing. Likewise, if u < 0, I's is positive, and the
monomers of the same species will cluster. Again, it has
to be stressed that we talk about the noncombinatorial
entropy effects and not about the enthalpy.

A more thorough investigation of noncombinatorial
entropy effects of the Flory y parameter was done by
Freed et al.®® in the framework of the lattice cluster
expansion theory®® and should hence be mentioned here.
This theory is much more involved than the present
“semitheoretical” approach. The entropic part of y is
calculated for different branching structures. In the
majority of the cases, this part is negative favoring
mixing of the two components. This coincides with our
results for T's, which appears to be negative as well.

+ cos(Qopg)| (All)

Appendix 11

In Appendix I, we show that for the system investi-
gated in the present work, the incompressibility as-
sumption is valid within the approximations made.

Schweizer realized that in order to calculate thermo-
dynamic properties in dense systems, the incompress-
ibility route could lead to wrong results.*® He extended
therefore the theory to take this problem into account
by formulating an effective incompressibility condition
which can be written as

—pmom(Q)Cyum(Q) > 1 (B1)

where p denotes the density, wm the form-factor of
species M and Cywm' the direct correlation function of M
with M'.
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This relation is generally true in a dense liquid, at
least for small Q. Using this condition, Schweizer
derives a more complicated expression for the effective
interaction parameter x(Q):

£ (CACB - CZAB) +

A= Vet

1—,/CglCy N 1-,/C,Cy B2
20, w4 AN (82)

where Caa(Q) and Cgg(Q) have been abbreviated by Ca
and Cg, respectively.

Using this expression for y, the scattering function
S(Q) can again be written in the familiar RPA form:*3

1 1
D 0p(Q)  DPgwg(Q)
Now it is to be shown that for our case of a PS/PPMS

blend, this y parameter is to a very good approximation
given by the y¢ff used in the data evaluation:

sHQ = — 2x(Q) (B3a)

2" =5(Ca+ Cs — 2Cp) (B3b)

We first show that Cg can be very well approximated
by
Cg=C,+vy (B4)
where y is independent of Q and < Ca.

To show this, we recall the form for the direct
correlation functions given in the paper (eq A9):

_ . A QZOZA
CA = aA? 1-— 10
(BS)
C.=a 4i-[(l - QZOZB)
B B3 10
We then obtain y by simply setting
Vb4
V= ?(aBOBB —a,0°,) (B6)

Plotting now Cg as given by (B4) vs Cg as given by (B5),
we find that the maximum difference at Q = 0.1 At is
only 4 x 1073. This value can clearly not be distin-
guished by experiment. Figure 9 proves the validity of
this statement.

Next we demonstrate that the last two terms in eq
B2 can be neglected. We start with

Caqp_ v

Cs 2C,

C
Ca 2C,

Inserting this into (B2), the last two terms yield together
with &g = (l - CDA)Z

and likewise
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Figure 9. Comparison of the direct correlation function Cy-
(Q) as calculated from eq B4 (upper curve) in Appendix 11 vs
that from eq B5 (lower curve). The difference between the two
curves is very small.

vy (11
4<I)CA[wA wg B9

As the two form factors are similar and the prefactor of

(B7) < 1, the last two terms in (B2) can be neglected.
Then we obtain

£ (CACs — CPpp) (B8)

2,/C,Cq

Cas(Q) was also derived in Appendix | to be given by

x(Q) =

Qg
Cag = aABOEAB(l T BVag (B9)

vas(Q) is the weakly attractive interaction potential
between species A and B and § is the inverse temper-
ature. We also recall the approximations made in eq
(A10) in Appendix I. To show that the resulting expres-
sion for x(Q) from (B8) will be similar to eq All, we
insert these approximations into Ca, Cg and Cag. Again
we neglect all higher order terms in 6, , and u and,
additionally, in pvag. A lengthy but conceptually simple
calculation yields

_4n 3u(l - QZGAZ) + By ](1 —~ —?’—)
3 Oa 10 AB(Q) ZCA
(B10)

x(Q) =

The precise form of the potential is given by eq A9 or
eq All. Substituting I's for the prefactor —4m/304%u, we
obtain the same expression as given by eq All except
for an overall scaling factor of (1 — y/2C,). This means
that within the approximations made, the more general
interaction parameter given in ref 3 and by eq 1 and
the simpler RPA-like form used in the paper are
(almost) identical.

Hence we have shown that in the case of a 50/50 blend
of PS and PpMS, the incompressibility assumption leads
to experimentally indistinguishable results from the
more elaborate effective incompressibility assumption.

The ultimate cause for the validity of the IRPA is that
in SANS, we measure at low Q. In this region, the main
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Q dependence comes from the interaction potential and
not form the direct correlation functions and an ap-
proximation as, e.g., made in eq B4 is valid.

References and Notes

(1) Rudolf, B. Macromol. Chem. Phys. 1995, 196, 4057.

(2) Rabeony, M.; Lohse, D. J.; Garner, R. T.; Han, S. J;
Graessley, W. W.; Migler, K. B. Macromolecules 1998, 31,
6511.

(3) Koch, T.; Strobl, G. R. J. Polym. Sci., Part B: Polym. Phys.
1990, 28, 343.

(4) Londono, J. D.; Narten, A. H.; Wignall, G. D.; Honell, K. G;
Hsieh, E. T.; Johnson, T. W.; Bates, F. S. Macromolecules
1994, 27, 2864.

(5) Janssen, S.; Schwahn, D.; Mortensen, K.; Springer, T. J. Phys.

(Paris) 1V 1993, 17, 3.

Janssen, S.; Schwahn, D.; Mortensen, K.; Springer, T.

Macromolecules 1993, 26, 5587.

(7) Frielinghaus, H.; Schwahn, D.; Mortensen, K.; Almdal, K.;
Springer, T. Macromolecules 1996, 29, 3263.

(8) Hajduk, D. A.; Urayama, P.; Gruner, S. M.; Erramili, S.
(others), Macromolecules 1995, 28, 7148.

(9) Flory, P. J. Principles of Polymer Chemistry; Cornell Univer-
sity: Ithaca, NY, 1953.

(10) de Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell
University: Ithaca, NY, 1979.

(11) A very good review of PRISM in bimodal melts is given in:
Schweizer, K. S.; Curro, J. G. J. Chem. Phys. 1989, 91, 5059.
For diblock copolymers, see: David, E. F.; Schweizer, K. S.
J. Chem. Soc., Faraday Trans. 1995, 91, 2411.

(12) Londono, J. D.; Wignall, G. D. Macromolecules 1997, 30, 3821.

(13) Jung, W. G.; Fischer, E. W. Makromol. Chem, Macromol.
Symp. 1988, 16, 281.

(14) Urban, V.; Thiyagarajan, P.; Zirkel, A.; Gruner, S. M. To be
published.

(15) Chandler, D.; Andersen, H. C. J. Chem. Phys. 1972, 57, 1930.

(16) Lowden, L. J.; Chandler, D. J. Chem. Phys. 1973, 59, 6587.

(17) Curro, J. G.; Schweizer, K. S. J. Chem. Phys. 1987, 87, 1842.

(18) Higgins, J. S.; Benoit, H. Polymers and Neutron Scattering;
Clarendon Press: Oxford, England, 1994.

(19) Bates, F. S.; Wignall, G. D.; Koehler, Macromolecules 1986,
19, 932.

(20) Boothroyd, A. T.; Rennie, A. R.; Wignall, G. D. J. Chem. Phys.
1993, 99, 9135.

(21) Debye, P. J. Phys. Colloid Chem. 1947, 51, 18.

(22) Schweizer, K. S.; Curro, J. G. Chem. Phys. 1990, 149, 105.

(23) Bates, F. S.; Wignall, G. D. Phys. Rev. Lett. 1986, 57, 1429.

(24) Bondi, A. J. Phys. Chem. 1964, 68, 441.

(25) Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107,
5422.

(26) Zimm, B. H. J. Chem. Phys. 1948, 16, 1093.

(27) Krishnamoorti, R.; Graessley, W. W.; Zirkel, A.; Richter, D.;
Lohse, D. J.; Fetters, L. J. To be published.

(28) Melenkevitz, J.; Crist, B.; Kumar, S. K. Macromolecules 2000,
33, 6869.

(29) Thiyagarajan, P.; Urban, V.; Littrell, K.; Ku, C.; Wozniak,
D. G.; Belch, H.; Vitt, R.; Toeller, J.; Leach, D.; Haumann, J.
R.; Ostrowski, G. E.; Donley, L. I.; Hammonds, J.; Carpenter,
J. M.; Crawford, R. K. The Performance of the Small-Angle
Diffractometer, SAND at IPNS. ICANS XIV—The Fourteenth
Meeting of the International Collaboration on Advanced
Neutron Sources; June 14—19, 1998, Starved Rock Lodge,
Utica, IL, 1998; Vol. 2, pp 864—878.

(30) Thiyagarajan, P.; et al. J. Appl. Crystallogr. 1997, 30, 280.

(31) Pines, D.; Nozieres, P. The Theory of Quantum Liquids;
Benjamin: New York, 1966; Vol. 1.

(32) Schwahn, D.; Mortensen, K.; Springer, T.; Yee-Madeira, H.;
Thomas, R. J. Chem. Phys. 1987, 87, no. 10, 6078.

(33) Schwahn, D.; Hahn, K; Streib, J.; Springer, T. J. Chem. Phys.
1990, 93, 8383.

(34) Balsara, N. P.; Fetters, L. J.; Hadjichristidis, N.; Lohse, D.
J.; Han, C. C.; Graessley, W. W.; Krishnamoorti, R. Macro-
molecules 1992, 25, 6137.

(35) Krishnamoorti, R.; Graessley, W. W.; Balsara, N. P.; Lohse,
D. J. J. Chem. Phys. 1994, 100, 3894.

(36) Copestake, A. P.; Evans, R.; Ruppersberg, H.; Schirmacher,
W. J. Phys. F: Met. Phys. 1983, 13, 1993.

(37) Ruppersberg, H.; Schirmacher, W. J. Phys. F: Met. Phys.
1984, 14, 2787.

(38) Freed, K. F.; Adriani, I. P. J. Chem. Phys. 1987, 12, 7342.

(39) Freed, H. F. J. Phys. A: Math. Gen. 1985, 18, 871.

(6

=



7386 Zirkel et al.

(40) Sariban, A.; Binder, K. J. Chem. Phys. 1987, 10, 5859.

(41) Briber, R. M.; Bauer, B. J.; Hammouda, B. J. Chem. Phys.

1994, 101, 2592.

(42) Brereton, M. G.; Fischer, E. W.; Herkt-Maetzky, Ch. J. Chem.

Macromolecules, Vol. 35, No. 19, 2002

Phys. 1987, 10, 6144.
(43) Schweizer, K. S. Macromolecules 1993, 26, 6033.

MAO0105760



