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Abstract. This is the first of two papers dealing with the structural solution of physical systems based on
infinite periodic minimal surfaces (IPMS), such as surfactant, lipid-water, and block copolymer systems.
In the first paper, the mathematics of minimal surfaces is briefly reviewed and details of the construction
of the associate D, P, and G IPMS are described. Electron density models of lipid-water systems based
on these IPMS are then constructed. The resulting models are then Fourier transformed to calculate the
amplitudes of the first few Fourier terms. These amplitudes are then used to reconstruct the electron
density which is examined and discussed. The subsequent paper will utilize the modeling results to aid in
solving the structure of several real physical systems based on the D surface.

PACS. 61.30.Cz Theory and models of liquid crystal structure – 87.15.By Structure and bonding – 83.70.Jr
Liquid crystals: nematic, cholesteric, smectic, discotic, etc.

1 Introduction

The first periodic surfaces with zero mean curvature were
discovered in the 19th century. Among these were the D
and P surfaces [1], members of a family of associate sur-
faces that was completed by the discovery of the G sur-
face [2]. These elegant structures are both minimal, that
is, having zero mean curvature everywhere, and periodic
in all three dimensions, hence their name, infinite periodic
minimal surfaces (IPMS). They remained a mathematical
abstraction, albeit a beautiful one, until a century later
when it was proposed that liquid crystal phases might be
based on these surfaces [3]. It was postulated that am-
phiphile monolayers would be draped over both sides of
the minimal surface with the remaining volume filled with
water. A single liquid crystal would then be composed
of a single bilayer that separates two distinct continuous
systems of water channels, i.e., bicontinuously. In recent
years, X-ray diffraction consistent with the space group of
these surfaces has been seen in a large variety of physical
systems, from lipid-water mixtures [4,5] to block copoly-
mers [6], to geological compounds such as zeolites [7].
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The intriguing nature of these structures has also
spawned a great deal of theoretical and experimental ef-
fort in recent years [8–15] and in the past [16–25]. Fur-
thermore, there have been a number studies suggesting
both the biological relevance and utility of these phases.
It has been shown that small amounts of the channel pro-
tein alamethicin can induce the cubic phase [26] and it has
been suggested that cubic structures may play a role in
membrane fusion [27]. Cubic phases have also been used
in the crystallization of membrane proteins [28] and as
templates for the synthesis of mesoporous silica [29].

Despite the widespread interest and applicability of
cubic phases, there have been few attempts at modeling
or reconstructing these structures from X-ray diffraction
information, due in no small measure to their mathemat-
ical complexity. For example, there have been a limited
number of modeling [5] and reconstruction efforts [4,5,30]
for D surface based systems.

In this paper, bilayer models of minimal surface
based structures are created, Fourier transformed, and
reconstructed. A detailed description of a straightfor-
ward method of constructing and Fourier transforming the
models is described. The resulting Fourier amplitudes are
then used to reconstruct the systems, which are examined
via one-dimensional electron density cuts. These cuts offer
a useful method of examining the reconstructions as inter-
pretable by researchers with knowledge of one-dimensional
bilayer structure. The work sets the stage for reconstruc-
tion of real lipid-water systems and for more detailed anal-
ysis of their structure, as described in a subsequent paper
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Fig. 1. Kreisbogenviereck (arc-quadrangle) in the complex
plane for the D, P, and G surfaces. Each of the circles has
a radius of 21/2 and they are centered at ±1/21/2 ± i1/21/2,
which are labeled II. The points of intersection labeled I are at
±(31/2 − 1)/21/2 and ±i(31/2 − 1)/21/2.

[31]. (Note: much of the work presented here may also be
found the Ph.D. thesis of Paul Harper [32].)

2 Construction of minimal surfaces

This section contains a brief description of the construc-
tion of Schwarz’s D and P surfaces and Schoen’s G surface
(see Tab. 1 for a listing of synonyms for these surfaces).
The equations defining the minimal surfaces are given and
a useful and highly accurate approximation to those equa-
tions is found. This approximate form allows the calcula-
tion of the coordinates for the minimal surfaces one to two
orders of magnitude faster than if the original equations
were used and it greatly reduces the amount of program-
ming effort required to construct these surfaces. The sec-
tion ends with a brief discussion of how the unit cells are
formed by knitting together the fundamental pieces of the
surfaces. A detailed description of the construction pro-
cess can be found in [32]. Information on construction can
also be found in [33].

Each of the D, P, and G surfaces is constructed by
quilting together copies of a single elementary piece, or
“Flächenstück” [35], for each surface. As the surfaces
are associate, they share the same R(w) and differ only
in the association parameter θ (Tab. 2). To construct a
Flächenstück for a given surface, one uses the appropriate
association parameter and maps the area in complex space
defined by the arc-quadrangle or “Kreisbogenviereck” [35],
(see Fig. 1) into real space via the Weierstrass represen-

Table 1. Minimal surface names and space groups. Note that
in the space group names that the bar across the three is often
dropped in casual usage.

Name/Nickname Single letter
Space group

Name Numbera

Double Diamondb D or Fc Pn3̄m 224

Plumber’s Nightmare P Im3̄m 229

Gyroid G Ia3̄d 230

a International Tables of Crystallography [40].
b The double diamond surface is often referred in the polymer
literature as OBDD, or ordered bicontinuous double diamond.
c The F designation originated with the discoverer of this sur-
face [1]. The discoverer of the gyroid [2] renamed this surface
(Schwarz’s F surface) as the D surface. The latter designation
seems more common in modern literature, though both labels
are still in use. See [35] for an example in which both labels are
used in the same paper!

Table 2. Parameters for the D, P and G surfaces. χ is the Euler
characteristic for a unit cell, θ is the association parameter in
radians, and A0 is the surface area per a unit cell with sides of
length 1 [48].

Surface χ θ A0

D −2 0 1.919

P −4 π/2 2.345

G −8 0.66349 3.091

tation,

x(w) = Re
∫ w

0

eiθ
(
1− w′2)R(w′) dw′, (1)

y(w) = − Im
∫ w

0

eiθ
(
1 + w′2)R(w′) dw′, (2)

z(w) = Re
∫ w

0

eiθ
(
2w′)R(w′) dw′, (3)

where

R(w) =
1

(1− 14w4 + w8)1/2
. (4)

Note that R(w) diverges at each of the corners of the
Kreisbogenviereck, thus extra care must be taken in nu-
merical evaluation of these formulas.

As the complex nature of the Kreisbogenviereck makes
for an awkward parameterization and the integrals de-
mand a fair amount of computational effort, both in com-
putation time and programming, it is useful to make a
highly accurate polynomial fit.

The function (X(v, w), Y (v, w), Z(v, w)), with −1 ≤
v, w ≤ 1, will give the coordinates for a given Flächenstück
to an accuracy of 0.1%. The formula is given below:

(X(v, w), Y (v, w),Z(v, w)) =

Re
[
eiθ(Xcom, Ycom, Zcom)

]
, (5)
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Fig. 2. (A) (v, w) coordinates for basic subsection of D surface,
(B) (v, w) coordinates for basic subsection of P surface, (C)
(g, h) coordinates for basic subsection of G surface (plot on
left) and (v, w) coordinates for basic subsection of G surface
(plot on right, rotated and enlarged version of plot on left) (see
text).

where

Xcom = s+ f(s, t)i,
Ycom = t− f(−t, s)i,

Zcom = 0.5(X2
com − Y 2

com) + 0.20659(X4
com − Y 4

com)

− 0.01268(X6
com − Y 6

com), (6)

where

f(s, t) = −1.00102t+ 2.00914s2t− 0.69992s4t

− 5.19821s6t− 0.62234t3 − 1.18001s2t3

+ 28.34854s4t3 − 1.21488t5 − 16.83032s2t5

+ 2.14239t7 (7)

and

s = 0.298(v + w), t = 0.298(−v + w). (8)

As a test of the accuracy of this formula, one can nu-
merically compute the Euler characteristic by integrat-
ing the Gaussian curvature over the unit cell and com-
paring it to the known value. This was done by aver-
aging the Gaussian curvatures for a 32 × 32 grid on the
appropriate Flächenstück and multiplying by the num-
ber of Flächenstücke per unit cell. There are 6, 24, and
12 Flächenstücke per unit cell for the D, G, and P sur-
faces, respectively. As seen in Table 3, the values match
up quite well. The integral of the Gaussian curvature over

Table 3. Actual and approximated Euler characteristics (see
text).

Surface χ χcalc

D −2 −1.996
P −4 −4.008
G −8 −8.005

a Flächenstück is the same for each of the different sur-
faces; the different Euler constants for the unit cells of the
different surfaces is a consequence of the varying number
of Flächenstücke used in the construction of a given unit
cell. In this paper, all calculations and graphs involving
the D, G, and P surfaces are made using this approxima-
tion.

The construction of the D cell begins with the basic
Flächenstück (−1 ≤ v, w ≤ 1, see Fig. 2), which is scaled
by a factor of 0.593207. By using symmetry operations
from the appropriate space group, the rest of the cell is
constructed. The construction of the P cell begins with
the top quadrant of the Flächenstück (0 ≤ v, w ≤ 1,
see Fig. 2) which is scaled by a factor of 0.463677. The
cell is then constructed from symmetry operations on this
basic piece, as shown in Figure 3.

The basic subsection for the G cell is more complex
than the others. First, start with all g, h such that

−1 ≤ g ≤ 1, h ≤ 1− |g|,
h ≥ −0.121906g + 0.052357g3 + 0.101371g5

+ 0.00310656g7 − 0.0349283g9. (9)

Then let v = g + h and w = −g + h for the plot (see
Fig. 2). This basic piece is then scaled by 0.376472 and,
as before, symmetry operations are used to build up the
cell.

Finally, one should consider the family of surfaces that
are associate to the D, P, and G surfaces. It turns out that
most of these surfaces are not periodic; those that are pe-
riodic intersect themselves [2]. Additionally, one should
be aware that there exist surfaces that are very similar
to IPMS known as periodic nodal surfaces (PNS) and pe-
riodic zero potential surfaces (POPS) which are rather
simple to calculate and quite interesting themselves [38].

3 Fourier transforms and bilayer modeling

In order to accurately reconstruct the electron density pro-
file for a system, it is essential to calculate the amplitudes
for a model of that system. This gives one a first guess
at the proper phasing and a picture of what the profile
should resemble. In this section, the Fourier amplitudes
for a lipid bilayer centered on the D, P, and G minimal
surfaces have been calculated. The bilayer models are then
reconstructed using the Fourier amplitudes and examined
using two representative cuts through the unit cells of each
of the surfaces. Both cuts are normal to the minimal sur-
face and one is through the points where the magnitude
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Fig. 3. (A) Basic subsection of the P surface, (B) three-fold symmetry applied to previous plot, (C) inversion symmetry applied
to previous plot, (D) previous plot moved by (1/4, −1/4, 1/4), (E) inversion symmetry on x-axis applied to previous plot, (F)
inversion symmetry on y-axis applied to previous plot, (G) inversion symmetry on z-axis applied to previous plot.

of the Gaussian curvature is the greatest and the other is
through the points where the magnitude of Gaussian cur-
vature is the least. Note that for these surfaces the mini-
mum magnitude of Gaussian curvature is zero and hence
the points of minimum magnitude of Gaussian curvature
are locally flat. These cuts are quite useful, as they allow
one to examine the bilayer at extremes of curvature. They
also present a digestible portion of the electron density
reconstruction, as a cut taken perpendicularly through a
bilayer should resemble a simple lamellar reconstruction.

3.1 Fourier transform relationships

Several mathematical relations will be useful in calculating
the Fourier transforms. The first takes advantage of the

centrosymmetric nature of these structures. Let Vtot be
the total structure, and V , V̄ be the two halves of the
structure related by inversion symmetry. One can write
down Fourier transform of the structure and rewrite it in
terms of one of the halves as follows:

F (Vtot) ≡
∫

Vtot

eiq·x d3x =
∫

V

eiq·x d3x

+
∫

V̄

eiq·x d3x =
∫

V

eiq·x d3x

+
∫

V

e−iq·x d3x = 2Re
[∫

V

eiq·x d3x
]
. (10)
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Another useful relation known as the Abbé transformation
[39] can be found using Gauss’s divergence theorem, which
states ∫

V

∇2ψ dV =
∮

S

∇ψ · dS. (11)

If one lets

ψ = eiq·x, (12)

you have

−q2
∫

V

eiq·x dV =
∮

S

eiq·xiq · dS, (13)

which can be solved to yield

F (V ) =
∫

V

eiq·x dV =
−i

q2

∮
S

eiq·xq · dS, (14)

thus reducing a volume integral to a surface integral. One
can also calculate the volume enclosed by the surface by
similar means. For this, one should choose ψ = x2+y2+z2,
giving ∫

V

dV =
1
3

∮
S

(x, y, z) · dS, (15)

yielding the volume enclosed by the surface in terms of
a surface integral. If one knows the volume by another
method, as is the case for the models used in this section,
this offers a useful check on one’s calculations.

3.2 Modeling lipid bilayers on IPMS

The simplest picture of this system is seen by simply drap-
ing a lipid monolayer over both sides of the appropriate
minimal surface, or, equivalently, a lipid bilayer bisected
by the minimal surface. Using the simple strip model of a
bilayer shown in Figure 4, the amplitudes are calculated
by the following formula:

Fbilayer = ρwaterFwater + ρheadgroupFheadgroup

+ ρtailsFtails + ρmethylsFmethyls, (16)

where ρwater is the electron density for water and Fwater

is the set of Fourier amplitudes of the volume occupied by
water, etc. Since the F000 amplitude is not calculated, an
arbitrary amount can be added to the electron densities.
To make the calculation easier, the electron density of wa-
ter is subtracted from all the electron densities, yielding

Fbilayer = (ρheadgroup − ρwater)Fheadgroup

+ (ρtails − ρwater)Ftails

+ (ρmethyls − ρwater)Fmethyls. (17)

Finally, this formula can be rewritten in terms of volumes
bounded by interfaces on both sides of the minimal sur-
face, i.e., surfaces as

Fbilayer = (ρheadgroup − ρwater)
× (Fwater-headgroup − Fheadgroup-tails)
+ (ρtails − ρwater)(Fheadgroup-tails − Ftails-methyls)
+ (ρmethyls − ρwater)Fmethyls, (18)

Fig. 4. Electron density model of a typical phospholipid used
for calculating Fourier amplitudes for minimal surface based
structures.

where Fwater-headgroup is the Fourier transform of the vol-
ume bounded by the water-headgroup interface, and so
on. Now all that remains is to calculate the positions of
these interfaces relative to the minimal surface.

It is assumed in these models that the distance is con-
stant, and so the interface surface is modeled as a constant
thickness surface, or a surface a constant distance away
from the minimal surface. Note that a constant thickness
surface is equivalent to a surface that is parallel to the
minimal surface and can therefore equivalently be called
a parallel interface surface. It is expected that the actual
interface will be a compromise between constant thick-
ness surface and a constant curvature surface. Since the
variation in thickness for a constant curvature surface has
been shown to be small (for a D surface based system),
one expects that a constant thickness surface would give
a reasonable approximation of the actual interface [16].
It is also important to note that the curvature of the
bilayer should result in some sort of change in electron
density. The next step in modeling these systems is to
attempt to account for this variation; however, a simple
strip model is a key first step and yields a decent match
with experimental data for some systems [31]. For at least
one D surface based system, it has been shown that the
bilayer half thickness (monolayer thickness) is approxi-
mately 0.2 times the unit cell size [20]. Using this fact
and the model in Figure 4, the monolayer thicknesses for
the water-headgroup, headgroup-tails, and tails-methyls
interfaces are calculated to be 0.2, 0.16, and 0.02 times
the unit cell size, respectively. For the G and P surfaces,
the monolayer thicknesses are calculated for a unit cell
with the same average Gaussian curvature as the afore-
mentioned D surface model. As an example, consider the
D and G surfaces. Since the average Gaussian curvatures
are equal, one has

〈κ〉D = 〈κ〉G (19)
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Table 4. Fourier amplitudes for the constant thickness D surface models. q(0, 0, 0) is the volume fraction for the unit cell. The
monolayer thicknesses are given as a fraction of the unit cell.

Constant thickness D surface amplitudes

q Monolayer thickness
Bilayer model

0.02 0.16 0.20

(0, 0, 0) 0.0766 0.5791 0.6998

(1, 1, 0) 0.0190 0.0996 0.0952 −1.00
(1, 1, 1) 0.0192 0.0870 0.0750 −1.12
(2, 0, 0) −0.0103 −0.0311 −0.0168 0.71

(2, 1, 1) 0.0084 0.0173 0.0035 −0.59
(2, 2, 0) 0.0100 0.0087 −0.0093 −0.67
(2, 2, 1) 0.0109 0.0045 −0.0146 −0.69
(3, 1, 0) −0.0073 −0.0002 0.0099 0.38

(3, 1, 1) −0.0038 0.0010 0.0054 0.17

(2, 2, 2) 0.0112 −0.0081 −0.0233 −0.53
(3, 2, 1) 0.0037 −0.0043 −0.0075 −0.12
(4, 0, 0) 0.0055 −0.0071 −0.0078 −0.08
(3, 2, 2) 0.0071 −0.0115 −0.0123 −0.08

Table 5. Fourier amplitudes for the constant thickness P surface models. q(0, 0, 0) is the volume fraction for the unit cell. The
monolayer thicknesses are given as a fraction of the unit cell.

Constant thickness P surface amplitudes

q Monolayer thickness
Bilayer model

0.016 0.13 0.16

(0, 0, 0) 0.0749 0.5723 0.6812

(1, 1, 0) −0.0143 −0.0855 −0.0884 1.00

(2, 0, 0) −0.0173 −0.0874 −0.0825 1.39

(2, 1, 1) 0.0144 0.0506 0.0348 −1.41
(2, 2, 0) −0.0013 −0.0008 0.0011 0.11

(3, 1, 0) 0.0031 0.0056 0.0002 −0.33
(2, 2, 2) −0.0127 −0.0120 0.0088 1.23

(3, 2, 1) −0.0068 −0.0022 0.0090 0.62

(4, 0, 0) 0.0077 −0.0014 −0.0126 −0.62
(3, 3, 0) 0.0066 −0.0035 −0.0101 −0.40
(4, 1, 1) −0.0075 0.0046 0.0136 0.50

(4, 2, 0) 0.0048 −0.0042 −0.0078 −0.23
(3, 3, 2) 0.0086 −0.0109 −0.0169 −0.37

and since

〈κ〉 =
∫
κdA∫
dA

=
2πχ
a2A0

, (20)

one can say

2πχD
a2DA0D

=
2πχG
a2GA0G

, (21)

and therefore

aG
aD

=

√
χGA0D

χDA0G

∼= 1.58, (22)

where χ is the Euler characteristic, A0 is the surface area
per unit cell for the appropriate surface (see Tab. 2 for

values) and aD, aG are the cell dimensions for the D and
G surfaces, respectively. After doing the above calculation
for the D and P surfaces as well, it is found that sur-
faces with the same average Gaussian curvature have cell
dimensions dD : dP : dG in the ratio of 1 : 1.28 : 1.58,
which have been calculated by others [41]. Therefore, for
a fixed lipid length and a unit cell, the ratios of the
lipid length per cell dimension for these surfaces would be

l
dD

: l
dP

: l
dG

, or 1 : 0.78 : 0.63. Hence, as the monolayer
thicknesses for the constant thickness surfaces bounded by
the water-headgroup, headgroup-tails, and tails-methyls
interfaces for the D surface are 0.2, 0.16, and 0.02, the cor-
responding monolayer thicknesses are approximately 0.16,
0.13, 0.016 for the P surface and 0.13, 0.10, 0.013 for the
G surface.
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Table 6. Fourier amplitudes for the constant thickness G surface models. q(0, 0, 0) is the volume fraction for the unit cell. The
monolayer thicknesses are given as a fraction of the unit cell.

Constant thickness G surface amplitudes

q Monolayer thickness
Bilayer model

0.013 0.10 0.13

(0, 0, 0) 0.0802 0.5841 0.7294

(2, 1, 1) 0.0170 0.0804 0.0704 −1.00
(2, 2, 0) 0.0116 0.0515 0.0430 −0.70
(3, 2, 1) −0.0024 −0.0052 −0.0013 0.17

(4, 0, 0) −0.0092 −0.0153 0.0018 0.67

(4, 2, 0) −0.0086 −0.0077 0.0086 0.60

(3, 3, 2) 0.0118 0.0067 −0.0167 −0.83
(4, 2, 2) 0.0071 0.0013 −0.0127 −0.48
(4, 3, 1) 0.0053 0.0000 −0.0096 −0.33
(5, 2, 1) −0.0019 0.0006 0.0025 −0.08
(4, 4, 0) −0.0015 0.0007 0.0010 0.03

(5, 3, 2) −0.0026 0.0029 0.0037 0.05

(6, 1, 1) −0.0061 0.0074 0.0098 0.13

Once the surface is defined, it is first broken up into
triangles, which are in turn broken up into right triangles.
The Abbé transformation is used to turn the Fourier trans-
form of the volume bounded by this surface into a surface
integral. This surface integral is then evaluated over the
right triangles that make up the surface. Apart from a
multiplicative constant, the surface integral for each of
the right triangles is essentially the Fourier transform of
the triangle. The integral for a given triangle is simplified
by rotating and translating the coordinates so that the
legs of the right triangle lie along the x-and y-axes. The
Fourier transform of this triangle is then given by∫ b

0

∫ −(a/b)y+a

0

eiqxx+iqyy dxdy =

aeibqy

aqxqy − bq2y
− beiaqx

aq2x − bqxqy
− 1

qxqy
, (23)

where a and b are, respectively, the lengths of the legs
along the x- and y-axes, qx, qy �= 0 and aqx − bqy �= 0.

The results of the calculations are listed in Tables
4, 5, and 6, for the D, P, and G surfaces, respectively.
The first column in these tables lists the amplitudes for
which the Fourier transforms are calculated. The next
three columns contain, respectively, the amplitudes for
the volume bounded by the tail-methyl interface, the tail-
headgroup interface, and the headgroup-water interface.
Next, these amplitudes and equation (18) are used to cal-
culate the model bilayer amplitudes. The final column of
each of the tables contains the model bilayer amplitudes,
with the first non-zero amplitude normalized to one.

For these calculations, the basic unit was divided up
into a 16 × 16 grid for the constant thickness surfaces.
For the Fourier transformations of the minimal surfaces
themselves, each Flächenstück was divided up into a
32 × 32 grid. Moving to a finer grid did not significantly
change the results. For example, if a 32×32 grid is used in

Table 7. Fourier amplitudes for a unit cell of the D surface.
q(0, 0, 0) is the surface area of a unit cell.

D surface Fourier amplitudes

q This worka Anderson [37] Mackay [34]

(0, 0, 0) 1.91925 1.91928 1.9193

(1, 1, 0) 0.4784 0.4780 0.4775

(1, 1, 1) 0.4840 0.4840 0.4866

(2, 0, 0) −0.2612 −0.2610 −0.2564
(2, 1, 1) 0.2124 0.2129

(2, 2, 0) 0.2567 0.2578

(2, 2, 1) 0.2793 0.2789

(3, 1, 0) −0.1881 −0.1877
(3, 1, 1) −0.0981 −0.0946
(2, 2, 2) 0.2904 0.2960

(3, 2, 1) 0.0963 0.0952

(4, 0, 0) 0.1435 0.1458

(3, 2, 2) 0.1865
a 32× 32 grid on each Flächenstück.

calculating the Fourier amplitudes for the constant thick-
ness D surface with a monolayer thickness of 0.2 (see Tab.
4), less than a 0.1% variation is seen in the q = (0, 0, 0)
amplitude and a variation of about 0.0001 or less is seen in
the remaining amplitudes. The results are shown in Tables
7, 8, and 9 for the D, P, and G surfaces, respectively, Note
the good agreement with values previously calculated [34,
36,37]. A discussion of these results is deferred until the
section on reconstruction of these models.

3.3 Reconstructions of models

Once one has the Fourier amplitudes, one can calculate
the electron density using the following formulas, taken
from [40]. For Pn3̄m symmetry, D surface symmetry, the
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Table 8. Fourier amplitudes for a unit cell of the P surface.
q(0, 0, 0) is the surface area of a unit cell.

P surface Fourier amplitudes

q This worka Anderson [37]

(0, 0, 0) 2.34587 2.345107

(1, 1, 0) −0.44939 −0.44936
(2, 0, 0) −0.54525 −0.54494
(2, 1, 1) 0.45616 0.45618

(2, 2, 0) −0.04179 −0.04256
(3, 1, 0) 0.09868 0.09885

(2, 2, 2) −0.40537 −0.40418
(3, 2, 1) −0.21770 −0.21779
(4, 0, 0) 0.24715

(3, 3, 0) 0.21536

(4, 1, 1) −0.24289
(4, 2, 0) 0.15695

(3, 3, 2) 0.27878
a 32×32 grid on each Flächenstück.

Table 9. Fourier amplitudes for a unit cell of the G surface.
q(0, 0, 0) is the surface area of a unit cell.

G surface Fourier amplitudes

q This worka Clerc [36]

(0, 0, 0) 3.0926

(2, 1, 1) 0.6607 0.660

(2, 2, 0) 0.4498 0.451

(3, 2, 1) −0.0922 −0.092
(4, 0, 0) −0.3612 −0.360
(4, 2, 0) −0.3382 −0.338
(3, 3, 2) 0.4671 0.467

(4, 2, 2) 0.2812 0.282

(4, 3, 1) 0.2094 0.209

(5, 2, 1) −0.0776 −0.077
(4, 4, 0) −0.0604 −0.060
(5, 3, 2) −0.1038 −0.104
(6, 1, 1) −0.2451 −0.245
a 32× 32 grid on each Flächenstück.

electron density is given by

see equation (24) on next page

The formula for Im 3̄m symmetry (P surface symmetry)
is much simpler, and is given by

ρ(x, y, z) =
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′ Fhkl cos(2πhx)

× cos(2πky) cos(2πlz). (25)

For Ia3̄d symmetry (G surface symmetry), the electron
density is

see equation (26) on next page

Fig. 5. D surface unit cell with lines drawn through the points
of maximum and minimum magnitude of Gaussian curvature.
The body diagonal (111) goes through the points where the
magnitude of Gaussian curvature is minimal and the vertical
line (001) goes through the points where the magnitude of
Gaussian curvature is maximal. Both lines are normal to the
surface at the intersection points.

Note that the primed summation indicates that the n = 0
term of the summation should be multiplied by 1

2 , a con-
vention followed throughout this series of papers. For all
three of these surfaces, the amplitudes satisfy the con-
dition Fhkl = Flhk = Fklh. For the D and P surfaces,
they also satisfy Fhkl = Fhlk. For the G surface the sit-
uation is slightly more complex, as Fhkl = Fhlk only for
h+ k+ l = 4n and Fhkl = −Fhlk for h+ k+ l = 4n+2.

Once one has reconstructed the electron density, it can
be examined in order to gain intuition about what one
should expect to see from a reconstruction of actual data.
Two-dimensional cross-sections are extraordinarily diffi-
cult to interpret and convey little information about im-
portant parameters such as the thickness of the bilayer
and information about the varying structure of the bi-
layer at points of differing curvature; one-dimensional cuts
through the surface offer much more useful information.
In all three of these surfaces, a cut along the body di-
agonal (111) will normally intersect the surface at its flat
points, or points of zero Gaussian curvature. As the Gaus-
sian curvature at all points on these surfaces is less than
or equal to zero, this represents one extreme in curvature.
If one then makes an appropriately selected vertical cut
(001), one normally intersects the points on the surface
with a maximum magnitude of Gaussian curvature. The
location of these cuts for each of the surfaces are shown
in Figure 5, 6, and 7 for the D, P, and G surfaces.

For the bilayer model based on a D surface, the elec-
tron density profile cuts are shown in Figure 8. The top
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ρ(x, y, z) =
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′F (h+k=2n,k+l=2n)
hkl cos(2πhx) cos(2πky) cos(2πlz)

−
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′F (h+k=2n,k+l=2n+1)
hkl sin(2πhx) sin(2πky) cos(2πlz)

−
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′F (h+k=2n+1,k+l=2n)
hkl cos(2πhx) sin(2πky) sin(2πlz)

−
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′F (h+k=2n+1,k+l=2n+1)
hkl sin(2πhx) cos(2πky) sin(2πlz). (24)

ρ(x, y, z) =
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′ F (h+k=2n,k+l=2n)
hkl cos(2πhx) cos(2πky) cos(2πlz)

−
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′ F (h+k=2n,k+l=2n+1)
hkl sin(2πhx) cos(2πky) sin(2πlz)

−
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′ F (h+k=2n+1,k+l=2n)
hkl sin(2πhx) sin(2πky) cos(2πlz)

−
∞∑

h=0

′
∞∑

k=0

′
∞∑

l=0

′ F (h+k=2n+1,k+l=2n+1)
hkl cos(2πhx) sin(2πky) sin(2πlz). (26)

Fig. 6. P surface unit cell with lines drawn through the points
of maximum and minimum magnitude of Gaussian curvature.
The body diagonal (111) goes through the points where the
magnitude of Gaussian curvature is minimal and the vertical
line (001) goes through the points where the magnitude of
Gaussian curvature is maximal. Both lines intersect the surface
at right angles.

Fig. 7. G surface unit cell with lines drawn through the points
of maximum and minimum magnitude of Gaussian curvature.
The body diagonal (111) goes through the points where the
magnitude of Gaussian curvature is minimal and the vertical
line (001) goes through the points where the magnitude of
Gaussian curvature is maximal. Both lines intersect the surface
at right angles.
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Fig. 8. Plots of model bilayer electron density for the D sur-
face. The y-axis is electron density in arbitrary units and the
x-axis is position along a cut line. Top view: cut along line
through points of zero Gaussian curvature. Middle view: cut
along line through points of maximum magnitude of Gaussian
curvature. See the previous figure for a plot of these lines on
a unit cell of the D surface. Bottom view: overlay of bilayer
from above views on the same horizontal scale. Solid line is
from top view and dashed line is from the middle view, where
the middle view has been horizontally shifted so the minima
coincide.

plot is an electron density profile through the body di-
agonal (111), which normally intersects the bilayer at its
flat point. The deep methyl trough is in the middle of the
plot and is immediately bounded by the peaks due to the
phosphorus headgroups. For these systems, the deepest
minima are methyl troughs and the greatest maxima are
the phosphorus headgroups, similar to the diffraction seen
in lamellar systems [42].

The region outside the bilayer is filled with water and
ideally would yield a flat line. The bumps that are seen at
the edges are due to the limited resolution of the recon-
struction. Though for this phospholipid model the bumps
are a minor feature, it will be shown in a subsequent paper
[31] that these spurious bumps are major features of the
reconstruction of non-phospholipids such as mono-olein.
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Fig. 9. Plots of model bilayer electron density for the P sur-
face. The y-axis is electron density in arbitrary units and the
x-axis is position along a cut line. Top view: cut along line
through points of zero Gaussian curvature. Middle view: cut
along line through points of maximum magnitude of Gaussian
curvature. See the previous figure for a plot of these lines on
a unit cell of the P surface. Bottom view: overlay of bilayer
from above views on the same horizontal scale. Solid line is
from top view and dashed line is from the middle view, where
the middle view has been horizontally shifted so the minima
coincide.

The bottom plot is a profile of the electron density through
the bilayer at its points of extreme curvature (001). As
the top plot, the methyl trough is clearly defined and is
bounded by the dominant methyl peaks. Outside of the
peaks is the water region which contains a bump reminis-
cent of the bump found in the water region of a recon-
struction of the HII phase of DOPE [43]. It is important
to be aware of these artifacts in the water region in order
to properly reconstruct and interpret systems based on a
D surface.

For the bilayer model based on a P surface, the elec-
tron density profile cuts are shown in Figure 9. The top
plot is an electron density profile through the body di-
agonal (111), which normally intersects the bilayer twice,
both times at flat points in the bilayer. The deep methyl
troughs bounded by the phosphorus headgroup peaks can
be seen on the left and right sides of the plot. The water
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Fig. 10. Plots of model bilayer electron density for the G
surface. The y-axis is electron density in arbitrary units and
the x-axis is position along a cut line. Top view: cut along line
through points of zero Gaussian curvature. Middle view: cut
along line through points of maximum magnitude of Gaussian
curvature. See the previous figure for a plot of these lines on
a unit cell of the G surface. Bottom view: overlay of bilayer
from above views on the same horizontal scale. Solid line is
from top view and dashed line is from the middle view, where
the middle view has been horizontally shifted so the minima
coincide.

regions in between the bilayers each contain a bump due
to the low resolution of the reconstructions. The bottom
plot is an electron density cut through the bilayer at two
points of extreme curvature (001). The methyl troughs are
well defined and the headgroup peaks are close enough to
partially overlap. The close proximity of the headgroups
suggests that one is unlikely to find an experimental ex-
ample corresponding to this model.

For the bilayer model based on the G surface, the elec-
tron density profile cuts are shown in Figure 10. The top
plot is an electron density profile through the body di-
agonal (111), which normally intersects the bilayer five
times, each time through a flat point on the bilayer. The
methyl troughs are clear, as are the phosphorous peaks.
The bottom plot shows a cut through the bilayer at two

points of extreme curvature (001). As with the top plot,
the methyl troughs and phosphorous peaks are quite clear
and there are no artifacts in the water region. It is then
rather ironic that though the G surface is the most dif-
ficult of these three minimal surfaces to construct, it is
the most straightforward to reconstruct, as one does not
encounter the artifacts present in the others.

4 Conclusions

The complexity of the minimal surfaces makes for a non-
trivial computational challenge. The computationally ac-
cessible methods detailed in this paper facilitate the ap-
plication of IPMS for the description and modeling of
physical systems. Another factor that has hindered the
application of IPMS to physical systems is the difficulty
of interpreting the traditional planar cross-sectional views
of the 3-dimensional surfaces. The linear profile method
used here is based on the recognition that the bilayers are
readily interpreted in terms of 1-dimensional density pro-
files. Another advantage of the linear profiles are that they
allow ready comparison of the bilayer structure at the ex-
tremes of the curvature present in the system. In so far as
variation in bilayer structure in a mesomorph is a factor in
the stability of the phase [11,16], comparison of the mag-
nitude of variation at the curvature extremes helps to un-
derstand the phase sequences and occurrences of different
structures. A final aspect of the modeling described above
is the explicit identification of artifacts resulting from the
low resolution of the Fourier reconstructions. The limited
resolution of the diffraction data from many complex me-
somorphs forces the use of low resolution reconstructions.
It is important to realize that it is possible to locate major
features of a bilayer to distances far below the resolution
of the reconstruction, as has been done in [43]. As there
are no attempts to locate features to such precision in
this paper, a justification of such reconstructions will not
be given; the interested reader is referred to an excellent
discussion of the practical limits of resolution in [44].

Future modeling and reconstruction efforts should seek
to analyze the position of the lipid-water interface, as has
been done for the inverse hexagonal phase [43]. It is gener-
ally accepted that lipid mesomorphic behavior is strongly
dependent on a competition between monolayer bending
and chain packing free energies [16,19,45]. Although phe-
nomenological forms for the bending [46] and chain pack-
ing [47] forms have been proposed, there is little infor-
mation about the range of validity of these forms as a
function of monolayer curvature and resultant thickness
variations. Minimal surface based phases offer the possi-
bility to examine the competition between curvature and
packing, since the curvature of constant thickness models
varies substantially as one ranges across the structure. If
the thickness of the bilayer as a function of curvature in
real systems can be extracted from reconstructions, then
it may be possible to gain insight as to the functional
forms of the curvature and packing energies, which would
aid in the understanding of mesomorphs based on minimal
surface morphologies.
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